Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Toshiba develops leading-edge silicon nanowire transistor for 16nm generation and beyond

Structure of a silicon nanowire transistor
Structure of a silicon nanowire transistor

Abstract:
Increasing 75% on-state current by reducing parasitic resistance

Toshiba develops leading-edge silicon nanowire transistor for 16nm generation and beyond

Tokyo | Posted on June 15th, 2010

Toshiba Corporation (TOKYO: 6502) today announced that it has developed a breakthrough technology for a nanowire transistor, a major candidate for a 3D structure transistor for system LSI in the 16nm generation and beyond. The company has achieved a 1mA/ìm on-current, the world's highest level for a nanowire transistor, by reducing parasitic resistance and improving the on-current level by 75%. This is a major step towards practical application of nanowire transistors. This achievement will be presented at the 2010 Symposium on VLSI Technology in Hawaii, on June 17.

When the size of current planar transistors scales smaller, current leakage between the source and the drain at its off-stage (off-leakage) will become a critical problem in securing circuit reliability. To overcome this, transistors with a 3D structure, including silicon nanowire transistors, are being investigated as candidates for future generations of devices. The silicon nanowire transistor can suppress off-leakage and achieve further short-channel operation, because its thin wire-shaped silicon channel (nanowire channel) is effectively controlled by the surrounding gate. However, parasitic resistance in the nanowire-shaped source/drain, especially in the region under the gate sidewall, degrades the on-current.

Toshiba overcame this problem by optimizing gate fabrication and significantly reducing the thickness of the gate sidewall, from 30nm to 10nm. Low parasitic resistance was realized by epitaxial silicon growth on the source/drain with a thin gate sidewall, which leads to a 40% increase in on-current. The company also achieved a further 25% increase in current performance by changing the direction of the silicon nanowire channel from the <110> to <100> plane direction. Utilizing these technologies, Toshiba has demonstrated an industry-leading on-current level of 1mA/ìm, when the off-current is 100nA/ìm, a 75% increase in the on-current at the same off-current condition.

Toshiba will continue to promote development of the transistor towards establishing fundamental technologies for high-performance, low-power system LSIs.

This work was partly supported by New Energy and Industrial Technology Development Organization (NEDO) 's Development of Nanoelectronic Device Technology.

Information in the news releases, including product prices and specifications, content of services and contact information, is current on the date of the press announcement, but is subject to change without prior notice.

####

For more information, please click here

Copyright © Toshiba Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Chip Technology

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

GLOBALFOUNDRIES®, ON Semiconductor Deliver the Industry’s Lowest Power Bluetooth® Low Energy SoC Family: 55nm LPx RF-enabled platform, with SST’s highly reliable embedded SuperFlash®, provides low power and cost for IoT and “Connected” Health and Wellness Devices June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Nanoelectronics

GLOBALFOUNDRIES on Track to Deliver Leading-Performance 7nm FinFET Technology: New 7LP technology offers 40 percent performance boost over 14nm FinFET June 13th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

IBM Research Alliance Builds New Transistor for 5nm Technology: Less than two years since announcing a 7nm test chip, scientists have achieved another breakthrough June 5th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Events/Classes

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Nanomechanics to Host High-Speed Nanoindentation Webinar June 21: Leading nanomechanical technology provider will host educational webinar focused on high-speed nanoindentation and mechanical properties mapping June 12th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project