Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Toshiba develops leading-edge silicon nanowire transistor for 16nm generation and beyond

Structure of a silicon nanowire transistor
Structure of a silicon nanowire transistor

Abstract:
Increasing 75% on-state current by reducing parasitic resistance

Toshiba develops leading-edge silicon nanowire transistor for 16nm generation and beyond

Tokyo | Posted on June 15th, 2010

Toshiba Corporation (TOKYO: 6502) today announced that it has developed a breakthrough technology for a nanowire transistor, a major candidate for a 3D structure transistor for system LSI in the 16nm generation and beyond. The company has achieved a 1mA/ým on-current, the world's highest level for a nanowire transistor, by reducing parasitic resistance and improving the on-current level by 75%. This is a major step towards practical application of nanowire transistors. This achievement will be presented at the 2010 Symposium on VLSI Technology in Hawaii, on June 17.

When the size of current planar transistors scales smaller, current leakage between the source and the drain at its off-stage (off-leakage) will become a critical problem in securing circuit reliability. To overcome this, transistors with a 3D structure, including silicon nanowire transistors, are being investigated as candidates for future generations of devices. The silicon nanowire transistor can suppress off-leakage and achieve further short-channel operation, because its thin wire-shaped silicon channel (nanowire channel) is effectively controlled by the surrounding gate. However, parasitic resistance in the nanowire-shaped source/drain, especially in the region under the gate sidewall, degrades the on-current.

Toshiba overcame this problem by optimizing gate fabrication and significantly reducing the thickness of the gate sidewall, from 30nm to 10nm. Low parasitic resistance was realized by epitaxial silicon growth on the source/drain with a thin gate sidewall, which leads to a 40% increase in on-current. The company also achieved a further 25% increase in current performance by changing the direction of the silicon nanowire channel from the <110> to <100> plane direction. Utilizing these technologies, Toshiba has demonstrated an industry-leading on-current level of 1mA/ým, when the off-current is 100nA/ým, a 75% increase in the on-current at the same off-current condition.

Toshiba will continue to promote development of the transistor towards establishing fundamental technologies for high-performance, low-power system LSIs.

This work was partly supported by New Energy and Industrial Technology Development Organization (NEDO) 's Development of Nanoelectronic Device Technology.

Information in the news releases, including product prices and specifications, content of services and contact information, is current on the date of the press announcement, but is subject to change without prior notice.

####

For more information, please click here

Copyright © Toshiba Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Chip Technology

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nanoelectronics

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Announcements

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Events/Classes

Nanometrics Announces Upcoming Investor Events July 20th, 2016

n-tech Research Announces August 3, 2016 Date for Smart Coatings Webinar July 18th, 2016

Instrumented Indentation Expert Addresses Trends with Industry Leaders: Leading nanoindentation expert hosts webinar discussing theory and practice of instrumented indentation July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic