Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano design, just like in nature

Abstract:
Researchers at Vienna University of Technology (TU Vienna) are currently coordinating an EU project. They are using biological principles as the inspiration to develop a new bionic fuel cell.

Nano design, just like in nature

Vienna | Posted on June 15th, 2010

Every living cell in our body can do it: covered with a thin membrane known as a cell membrane or nanomembrane, the cells can deliberately let specific substances in and out. Although it is thousands of times thinner than a human hair, this nanomembrane has an extremely complex structure and function. Three Nobel prizes have already in recent years been awarded for improving our understanding of these nanomembranes.

Biological nanomembrane has hundreds of very tinny channels which convey water, electrical charges and nutrients around and in doing so, create an equilibrium within the cell. However, we still do not know about many of the functions and structural details, but only channels which balance the water and proton exchange have been understand in depth. "These extremely fine cell membrane channels, with the ability to selectively convey protons, function in exactly the same way as fuel cells created by humans", explains Dr Werner Brenner, "only this naturally occurring process is considerably more efficient".

Fuel cells: an alternative to oil

Today, fuel cells are seen as a serious alternative to oil, which until now has been the basis for electrical energy and mobility. However, the earth's oil reserves are rapidly running out, under economic pressure to drill ever deeper into the seabed. Oil combustion also generates CO2, soot and other pollutants. In contrary, the only waste product from a fuel cell is water.

The EU project focuses on the design of the main component of every fuel cell - i.e. the membrane - with the intention of conveying protons more efficiently than in previous solutions. "It is not easy task, but it is possible. Nature has been producing these structures for billions of years and their effectiveness can be seen in every living organism. Our task is to transfer the structure of these natural nanochannels to an artificial nanomembrane, which is itself only a few hundred nanometres thick", explains Dr Jovan Matovic.

A wide range of scientific approaches are required for this project, ranging from solid state physics and nanotechnology through to chemistry. Therefore, international cooperation with six universities, research institutes and companies is also of great importance. The EU project is being coordinated by the TU Vienna research team of Dr Werner Brenner, Dr Jovan Matovic and Dr Nadja Adamovic at the Institute of Sensor and Actuator Systems.

The University research team is confident: "The results of this project should have far-reaching significance for our society. If we succeed in creating the nanochannels exactly as planned, then completely different fields of application will open up, such as the accurately controlled delivery of medicine, water desalination or even new types of sensors", explains Dr Nadja Adamovic, "In this project, the boundaries between "artificial and "natural" are becoming even more blurred".

####

For more information, please click here

Contacts:
Vienna University of Technology
Institute of Sensor and Actuator Systems
Floragasse 7, 1040 Vienna

Dr Werner Brenner Dipl.Ing
T : +43 (1) 58801 - 366 81


Dr Jovan Matovic Dipl.Ing
T : +43 (1) 58801 - 766 67


Dr Nadja Adamovic Dipl.Ing
T : +43 (1) 58801 - 766 48


Author:
Vienna University of Technology
Public Relations Office
Bettina Neunteufl, MAS
T : +43 (1) 58801 - 41025

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

Get ready for NanoDays! March 5th, 2015

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Sensors

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Water

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Fuel Cells

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Review highlights the potential for graphene and other 2D crystals in the energy sector February 4th, 2015

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Nanobiotechnology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE