Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Nano design, just like in nature

Abstract:
Researchers at Vienna University of Technology (TU Vienna) are currently coordinating an EU project. They are using biological principles as the inspiration to develop a new bionic fuel cell.

Nano design, just like in nature

Vienna | Posted on June 15th, 2010

Every living cell in our body can do it: covered with a thin membrane known as a cell membrane or nanomembrane, the cells can deliberately let specific substances in and out. Although it is thousands of times thinner than a human hair, this nanomembrane has an extremely complex structure and function. Three Nobel prizes have already in recent years been awarded for improving our understanding of these nanomembranes.

Biological nanomembrane has hundreds of very tinny channels which convey water, electrical charges and nutrients around and in doing so, create an equilibrium within the cell. However, we still do not know about many of the functions and structural details, but only channels which balance the water and proton exchange have been understand in depth. "These extremely fine cell membrane channels, with the ability to selectively convey protons, function in exactly the same way as fuel cells created by humans", explains Dr Werner Brenner, "only this naturally occurring process is considerably more efficient".

Fuel cells: an alternative to oil

Today, fuel cells are seen as a serious alternative to oil, which until now has been the basis for electrical energy and mobility. However, the earth's oil reserves are rapidly running out, under economic pressure to drill ever deeper into the seabed. Oil combustion also generates CO2, soot and other pollutants. In contrary, the only waste product from a fuel cell is water.

The EU project focuses on the design of the main component of every fuel cell - i.e. the membrane - with the intention of conveying protons more efficiently than in previous solutions. "It is not easy task, but it is possible. Nature has been producing these structures for billions of years and their effectiveness can be seen in every living organism. Our task is to transfer the structure of these natural nanochannels to an artificial nanomembrane, which is itself only a few hundred nanometres thick", explains Dr Jovan Matovic.

A wide range of scientific approaches are required for this project, ranging from solid state physics and nanotechnology through to chemistry. Therefore, international cooperation with six universities, research institutes and companies is also of great importance. The EU project is being coordinated by the TU Vienna research team of Dr Werner Brenner, Dr Jovan Matovic and Dr Nadja Adamovic at the Institute of Sensor and Actuator Systems.

The University research team is confident: "The results of this project should have far-reaching significance for our society. If we succeed in creating the nanochannels exactly as planned, then completely different fields of application will open up, such as the accurately controlled delivery of medicine, water desalination or even new types of sensors", explains Dr Nadja Adamovic, "In this project, the boundaries between "artificial and "natural" are becoming even more blurred".

####

For more information, please click here

Contacts:
Vienna University of Technology
Institute of Sensor and Actuator Systems
Floragasse 7, 1040 Vienna

Dr Werner Brenner Dipl.Ing
T : +43 (1) 58801 - 366 81


Dr Jovan Matovic Dipl.Ing
T : +43 (1) 58801 - 766 67


Dr Nadja Adamovic Dipl.Ing
T : +43 (1) 58801 - 766 48


Author:
Vienna University of Technology
Public Relations Office
Bettina Neunteufl, MAS
T : +43 (1) 58801 - 41025

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Possible Futures

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Nanomedicine

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Water

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Fuel Cells

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

3-D paper-based microbial fuel cell operating under continuous flow condition July 5th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

VentureLab nanotechnology startup wins TechConnect Innovation Award June 2nd, 2016

Nanobiotechnology

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic