Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano design, just like in nature

Abstract:
Researchers at Vienna University of Technology (TU Vienna) are currently coordinating an EU project. They are using biological principles as the inspiration to develop a new bionic fuel cell.

Nano design, just like in nature

Vienna | Posted on June 15th, 2010

Every living cell in our body can do it: covered with a thin membrane known as a cell membrane or nanomembrane, the cells can deliberately let specific substances in and out. Although it is thousands of times thinner than a human hair, this nanomembrane has an extremely complex structure and function. Three Nobel prizes have already in recent years been awarded for improving our understanding of these nanomembranes.

Biological nanomembrane has hundreds of very tinny channels which convey water, electrical charges and nutrients around and in doing so, create an equilibrium within the cell. However, we still do not know about many of the functions and structural details, but only channels which balance the water and proton exchange have been understand in depth. "These extremely fine cell membrane channels, with the ability to selectively convey protons, function in exactly the same way as fuel cells created by humans", explains Dr Werner Brenner, "only this naturally occurring process is considerably more efficient".

Fuel cells: an alternative to oil

Today, fuel cells are seen as a serious alternative to oil, which until now has been the basis for electrical energy and mobility. However, the earth's oil reserves are rapidly running out, under economic pressure to drill ever deeper into the seabed. Oil combustion also generates CO2, soot and other pollutants. In contrary, the only waste product from a fuel cell is water.

The EU project focuses on the design of the main component of every fuel cell - i.e. the membrane - with the intention of conveying protons more efficiently than in previous solutions. "It is not easy task, but it is possible. Nature has been producing these structures for billions of years and their effectiveness can be seen in every living organism. Our task is to transfer the structure of these natural nanochannels to an artificial nanomembrane, which is itself only a few hundred nanometres thick", explains Dr Jovan Matovic.

A wide range of scientific approaches are required for this project, ranging from solid state physics and nanotechnology through to chemistry. Therefore, international cooperation with six universities, research institutes and companies is also of great importance. The EU project is being coordinated by the TU Vienna research team of Dr Werner Brenner, Dr Jovan Matovic and Dr Nadja Adamovic at the Institute of Sensor and Actuator Systems.

The University research team is confident: "The results of this project should have far-reaching significance for our society. If we succeed in creating the nanochannels exactly as planned, then completely different fields of application will open up, such as the accurately controlled delivery of medicine, water desalination or even new types of sensors", explains Dr Nadja Adamovic, "In this project, the boundaries between "artificial and "natural" are becoming even more blurred".

####

For more information, please click here

Contacts:
Vienna University of Technology
Institute of Sensor and Actuator Systems
Floragasse 7, 1040 Vienna

Dr Werner Brenner Dipl.Ing
T : +43 (1) 58801 - 366 81


Dr Jovan Matovic Dipl.Ing
T : +43 (1) 58801 - 766 67


Dr Nadja Adamovic Dipl.Ing
T : +43 (1) 58801 - 766 48


Author:
Vienna University of Technology
Public Relations Office
Bettina Neunteufl, MAS
T : +43 (1) 58801 - 41025

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Possible Futures

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical ďdeep learningĒ: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Sensors

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Water

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Plasmonics could bring sustainable society, desalination tech June 2nd, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Fuel Cells

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers June 5th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project