Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotech Speakers Hold Promise for Sonar Uses

Dr. Ali Aliev
Dr. Ali Aliev

Abstract:
Submarines Could Use New Technology to Scan the Depths and Elude Detection

Nanotech Speakers Hold Promise for Sonar Uses

Dallas, TX | Posted on June 14th, 2010

UT Dallas researchers have found that carbon nanotube sheets excel as underwater sound generators and noise-canceling speakers, two highly desirable traits for submarine sonar and stealth capabilities.

Researchers had previously shown that sheets of carbon nanotubes can produce a wall of sound in air, without moving back and forth like traditional speakers. The latest study from the UT Dallas Alan G. MacDiarmid NanoTech Institute, reveals that nanoscience speakers perform as well underwater as they do on land, and that one day they could replace traditional submarine sonar arrays.

The study was published in the American Chemical Society's journal Nano Letters.

Sonar works by generating sound from an underwater speaker and collecting the sound waves that are reflected back to the sub. Sonar operators can determine an object's size, location and speed with sonar data. But, the delicate sonar arrays are expensive, they add to a boat's weight, and they do nothing to reduce a submarine's propeller sounds and other noises as it navigates the seas.

Unlike alcohol or other liquids, water has an interesting effect on carbon nanotubes. The tiny tubes repel water slightly and form a layer of air along their perimeter. Once energized, the thin, light sheets of nanotubes heat and cool incredibly quickly, producing a pressure wave in the air around the nanotube that our ears and other devices perceive as sound.

Led by Dr. Ali Aliev, a research scientist at the NanoTech Institute, the team discovered that nanotubes excel at producing low frequency sound waves, which are ideal for probing the depths of the ocean with sonar. The team also confirmed previous studies noting the ability of nanoscience speakers to cancel noise when tuned to the correct frequency — say, the rumble of a submarine.

"Nanotube sheets can easily be deployed on curved surfaces, like the hull of a sub," Aliev said. "They're very light, about 20 microns thick, and they're 99 percent porous. Layers of nanotube sheets can be built up, each with a different function, for sonar projector applications or for control of the boundary layer losses for marine vehicles. Meaning, periodically heating the skin of a sub—or even an airplane—warms the thin pocket of air around the vehicle and reduces friction and turbulence. Or, these underwater sound generators could cancel out the sonar signal being sent out by another sub, leaving the friendly sub undetected."

####

For more information, please click here

Contacts:
Media Contact
Brandon V. Webb
UT Dallas
(972) 883-2155

Copyright © University of Texas in Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Possible Futures

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Military

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic