Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Reaction Mechanisms during Plasma-assisted Atomic Layer Deposition

Figure 1: Schematic concept of the different diagnostics implemented in situ to obtain a fundamental understanding of the reaction mechanism of plasma-assisted ALD
Figure 1: Schematic concept of the different diagnostics implemented in situ to obtain a fundamental understanding of the reaction mechanism of plasma-assisted ALD

Abstract:
Dr Erik Langereis and Prof Erwin Kessels
Department of Applied Physics, Eindhoven University of Technology, The Netherlands

Reaction Mechanisms during Plasma-assisted Atomic Layer Deposition

UK | Posted on June 14th, 2010

Atomic layer deposition (ALD) is considered the primary candidate for growth of conformal films with thickness control on the atomic level. The technique derives its growth control by alternating (two) self-limiting adsorption reactions in order to ensure that a submonolayer of film is deposited per so-called ALD cycle. By selecting the appropriate amount of deposition cycles, the film thickness can be controlled with ultimate precision.

A novel ALD concept is to use a plasma to activate one of the reactants in the gas phase in order to provide additional reactivity to the surface chemistry. These plasma-assisted ALD processes are researched to allow for deposition at reduced temperatures, to realize improved and tunable film properties, and to increase the choice in chemistry and precursors. To obtain a fundamental understanding of the surface reactions taking place and to evaluate the merits of the use of a plasma, a systematic study on the reaction mechanism of plasma-assisted ALD has been carried out for the deposition of metaloxides, metal-nitrides, and noble metals (Fig. 1).

Especially at reduced substrate temperatures, plasma-assisted ALD of metal-oxides distinguishes itself by providing good quality films due to the reactivity delivered by an O2 plasma. By determination of the surface groups by transmission infrared (IR) spectroscopy [1] and the reaction by-products by the combination of mass spectrometry and optical emission spectroscopy (OES) [2], it has been established that the Al2O3 growth is driven by a combustion-like surface chemistry. This chemistry proceeds for depositions down to room temperature. At this low temperature, it is observed that the plasma exposure time is an effective means to optimize the film quality.

For plasma-assisted ALD of metal-nitrides, the reducing power of an H2 plasma is found to be key in depositing conductive films. Using a plasma provides, moreover, the opportunity to tailor the material properties of the film by controlling the plasma condition. For example, by varying the plasma exposure time and plasma gas composition, the TaNx film properties can be controlled from conductive TaN to semiconductive Ta3N5 as evident from spectroscopic ellipsometry [3,4].

Furthermore, for ALD of noble metals such as Pt and Ru, the nucleation and film closure can be improved considerably using a plasma, which can result in smoother and thinner applicable metal films [5]. The mechanisms and growth observations deduced from these studies are expected to be generic for equivalent plasma-assisted ALD processes.

[1] Langereis et al., Appl. Phys. Lett. 92, 231904 (2008).
[2] Heil et al., J. Appl. Phys. 103, 103302 (2008).
[3] Langereis et al., J. Appl. Phys. 102, 083517 (2007).
[4] Langereis et al., topical review in J. Phys. D.: Appl. Phys. 42, 073001 (2009)
[5] Knoops et al., Electrochem. Solid-State Lett. 12, G34 (2009).

####

For more information, please click here

Copyright © Oxford Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Thin films

Southampton scientists grow a new challenger to graphene September 23rd, 2014

Beneq launches nFOG™ wet coating technology September 3rd, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Announcements

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE