Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UAlbany NanoCollege Announces $2M in Federal Funding to Support Innovative Nanotechnology Education and Research

Abstract:
Initiatives to enable critical advances for health care, military, IT and automotive applications

UAlbany NanoCollege Announces $2M in Federal Funding to Support Innovative Nanotechnology Education and Research

Albany, NY | Posted on June 12th, 2010

The College of Nanoscale Science and Engineering ("CNSE") of the University at Albany today announced the receipt of more than $2 million in federal funding that will support leading-edge nanotechnology educational and research initiatives to enable critical innovations targeting the health care, military, information technology, communications and automotive industries.

Dr. Bin Yu, CNSE Professor of Nanoengineering, received an award from the National Science Foundation ("NSF") for $486,000 to explore ultra-scaled, self-assembled one-dimensional nanosystems, commonly known as nanowires, for energy-efficient information processing and storage. The research is expected to have broader impacts on ultra-high-capacity data storage, programmable logic, artificial neurosynaptics, and cognitive computing.

Dr. Yu and Dr. Eric Eisenbraun, CNSE Associate Professor of Nanoscience, were awarded $360,000 from NSF for research that targets the development of high-speed, ultra-low-power, highly scalable, and manufacturing-worthy all-graphene-based integrated circuits. The proposed integrated platform for future "carbon IC chips" may have significant impacts in a variety of areas, including logic computing, broadband/low-noise RF communication, interconnects, and innovative distributed sensing networks.

Dr. Wei Wang, CNSE Assistant Professor and Senior Research Scientist of Nanoscale Engineering, and Dr. Nathaniel Cady, CNSE Assistant Professor of Nanobioscience, received $460,000 in funding from the U.S. Air Force Research Laboratory ("AFRL") to enable integration of CMOS devices with memristors - including the development of novel prototypes - to support a new computing paradigm. Early research shows significant promise for the development of smaller nanoelectronic computer architectures that generate new and efficient ways to perform computational tasks while consuming less power.

Dr. Yubing Xie, CNSE Assistant Professor of Nanobioscience, will share in a $400,000 grant from the National Institutes of Health ("NIH") to study the prevention and treatment of obesity and other fat-related illnesses such as diabetes, cardiovascular disease and breast cancer. Working in partnership with Drs. David Corr and Douglas Chrisey from Rensselaer Polytechnic Institute and Dr. Yu-Hua Tseng from Harvard University, the research will deploy a cell-writing technique to gain new understanding of how new fat cells arise in adults.

And, Dr. Harry Efstathiadis, CNSE Associate Professor of Nanoengineering, received $320,000 through the U.S. Department of Energy ("DOE") to enable improved thermoelectric devices for power generation and cooling applications. Working with the Naval Research Laboratory ("NRL"), Hi-Z Technologies in San Diego, CA and the University of San Diego, his research will explore advanced technologies that would allow for conversion of waste heat to be used for cooling, particularly in automobiles and heavy trucks, while reducing the size and cost of thermoelectric heat recovery units.

"The leading-edge research and pioneering education at UAlbany's College of Nanoscale Science and Engineering will be further enhanced by the critical resources obtained through these federal grants," said George M. Philip, President of the University at Albany. "Our students and faculty will benefit through new opportunities to explore groundbreaking science, and through the NanoCollege, UAlbany continues to gain recognition as a home for world-class research."

"I congratulate Professors Yu, Eisenbraun, Wang, Cady, Xie and Efstathiadis on the receipt of these prestigious federal awards," said Dr. Alain E. Kaloyeros, Senior Vice President and Chief Executive Officer of CNSE. "This recognition underscores CNSE's standing as a global hub for next-generation education and innovative research that is fueling novel nanoscale-enabled technologies to address the most critical issues of the 21st century."

With the latest group of faculty awards, CNSE so far this year has announced the receipt of nearly $6 million in federal funding for innovative nanoscale education and research initiatives.

####

About UAlbany NanoCollege
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE’s Albany NanoTech Complex is the most advanced research enterprise of its kind at any university in the world. With over $5.5 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE’s Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech.

For more information, please click here

Contacts:
Steve Janack
CNSE Vice President for Marketing and Communications
(phone) 518-956-7322
(cell) 518-312-5009

Copyright © UAlbany NanoCollege

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Self Assembly

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Sensors

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Researchers create practical and versatile microscopic optomechanical device: Trapping light and mechanical waves within a tiny bullseye, design could enable more sensitive motion detection January 11th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Military

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project