Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A new use for gold

An image of gold nanoparticles. Image courtesy Kimberly Hamad-Schifferli
An image of gold nanoparticles. Image courtesy Kimberly Hamad-Schifferli

Abstract:
Engineers turn a drawback — the stickiness of gold nanoparticles — into an advantage.

By Diana LaScala-Gruenewald, MIT News correspondent

A new use for gold

Cambridge, MA | Posted on June 11th, 2010

Gold nanoparticles — tiny spheres of gold just a few billionths of a meter in diameter — have become useful tools in modern medicine. They've been incorporated into miniature drug-delivery systems to control blood clotting, and they're also the main components of a device, now in clinical trials, that is designed to burn away malignant tumors.

However, one property of these particles stands in the way of many nanotechnological developments: They‘re sticky. Gold nanoparticles can be engineered to attract specific biomolecules, but they also stick to many other unintended particles — often making them inefficient at their designated task.

MIT researchers have found a way to turn this drawback into an advantage. In a paper recently published in American Chemical Society Nano, Associate Professor Kimberly Hamad-Schifferli of the Departments of Biological Engineering and Mechanical Engineering and postdoc Sunho Park PhD '09 of the Department of Mechanical Engineering reported that they could exploit nanoparticles' stickiness to double the amount of protein produced during in vitro translation — an important tool that biologists use to safely produce a large quantity of protein for study outside of a living cell.

During translation, groups of biomolecules come together to produce proteins from molecular templates called mRNA. In vitro translation harnesses these same biological components in a test tube (as opposed to in vivo translation, which occurs in live cells), and a man-made mRNA can be added to guarantee the production of a desired protein. For example, if a researcher wanted to study a protein that a cell would not naturally produce, or a mutated protein that would be harmful to the cell in vivo, he might use in vitro translation to create large quantities of that protein for observation and testing. But there's a downside to in vitro translation: It is not as efficient as it could be. "You might get some protein one day, and none for the next two," explains Hamad-Schifferli.

With funding from the Institute of Biomedical Imaging and Bioengineering, Hamad-Schifferli and her co-workers initially set out to design a system that would prevent translation. This process, known as translation inhibition, can stop the production of harmful proteins or help a researcher determine protein function by observing cell behavior when the protein has been removed. To accomplish this, Hamad-Schifferli attached DNA to gold nanoparticles, expecting that the large nanoparticle-DNA (NP-DNA) aggregates would block translation.

She was discouraged, however, to find that the NP-DNA did not decrease protein production as expected. In fact, she had some unsettling data suggesting that instead of inhibiting translation, the NP-DNA were boosting it. "That's when we put on our engineering caps," recalls Hamad-Schifferli.

It turns out that the sticky nanoparticles bring the biomolecules needed for translation into close proximity, which helps speed the translation process. Additionally, the DNA part of the NP-DNA complex is designed to bind to a specific mRNA molecule, which will be translated into a specific protein. The binding must be tight enough to hold the mRNA in place for translation, but loose enough that the mRNA can also attach to the other molecules necessary for the process. Because the designed DNA molecule has a specific mRNA partner, that mRNA in a solution of many similar molecules can be enhanced without having to be isolated.

In addition to enhancing in vitro translation, Hamad-Schifferli's NP-DNA complexes may have other applications. According to Ming Zheng, a research chemist with the National Institute of Standards and Technology, they could be combined with carbon nanotubes — tiny, hollow cylinders that are incredibly strong for their size. They may ultimately be the cornerstone of transport systems that ferry drugs into cells or between cells. The stickiness of the NP-DNA might enhance the speed and accuracy of such a drug-delivery system.

Although Hamad-Schifferli is confident that her discovery will make in vitro translation more reliable and efficient, she is not done. She hopes to tinker with her system to further enhance protein production in vitro, and see if the system can be applied to enhance translation in live cells. To help reach these goals, she must design and conduct experiments to determine which molecules are involved in the enhancement process, and how they interact. "The upside is that we've been lucky," Hamad-Schifferli says, reflecting on her discovery. "The downside is that it will be difficult to tease out exactly how the system works."

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Nanotubes/Buckyballs/Fullerenes

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nanomedicine

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Biophysicists propose new approach for membrane protein crystallization March 8th, 2017

Announcements

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Nanobiotechnology

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Biophysicists propose new approach for membrane protein crystallization March 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project