Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Glasgow key player in €26M European project to develop next generation nanotransistor chips

Abstract:
The University of Glasgow is playing a key role in a €26M (£23m) European project called MODERN looking at how to design the next generation computer chips - using variable and unreliable nanotransistors.

Glasgow key player in €26M European project to develop next generation nanotransistor chips

Glasgow | Posted on June 10th, 2010

Transistors are the tiny on-off switches which are the building blocks of all electronic circuits and computer chips and have been steadily decreasing in size for the past 50 years.

However, the smaller transistors become, the more atomic-scale variations in their size and structure affect their performance and thus the reliability of a whole circuit.

This increased variability is a problem which presents a huge barrier to the continued scaling of microchips and the development of ever-more powerful computers and electronic systems.

The focus of MODERN (MOdeling and DEsign of Reliable, process variation-aware Nanoelectronic devices, circuits and systems) is to develop new design tools and methodology for transistors and circuits at the nanoscale which will enable the manufacturing of reliable, low cost, low electromagnetic interference, high-yield complex silicon chips and corresponding products using unreliable and variable devices.

Currently the lead semiconductor manufacturer is producing microchips with transistors less than 30 nanometres in size - by comparison a human hair is around 100,000 nanometres wide - but future transistors will have to be even smaller if computers are to continue to increase in power.

Professor Asen Asenov, a device modelling expert in Electronics and Electrical Engineering and the leading world authority in statistical complementary metal-oxide semiconductor variability, is leading Glasgow's involvement in the project which is worth £1.5m to the University and comprises 28 European partners.

The MODERN team was assembled in response to a funding call by the European Nanoelectronics Initiative Advisory Council (ENIAC).

Support for Glasgow's involvement was made possible thanks to special funding package from the Engineering and Physical Sciences Research Council (ESPRC) and Scottish Enterprise.

In the MODERN consortium the University of Glasgow is providing key expertise in the physical simulation of statistical variability and reliability, statistical compact model extraction and statistical circuit simulation.

The simulations will be conducted using leading edge variability simulation tools developed in the Glasgow Device Modelling Group over the last 10 years and will involve a recently established spin-out company called Gold Standard Simulation which will be providing services to the MODERN project.

Prof Asenov said: "We invested heavily in variability research and in the development of variability simulation tools at a time when the industry was not fully aware of the gravity of the forthcoming variability problem. Now we are in the position to make significant contribution in tackling the variability challenge".

David Jack, Project manager at Scottish Enterprise, said: "This project will reinforce the University of Glasgow's position at the forefront of technology which will be built into many new electronic products. The formation of spin-out company, Gold Standard Simulations Ltd, demonstrates that Scotland's growing businesses have a strong opportunity to lead the electronics industry of the future."

EPSRC Chief Executive, Dave Delpy, said: "Working with Scottish Enterprise we are delighted to have enabled the UK to participate in this ambitious and potentially high impact project. This collaboration is an excellent example of the union of world leading research and a delivery partner that can provide powerful economic impact and accelerates our path to prosperity."

More information about MODERN is available at www.eniac-modern.org

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow
Media Relations Office
0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Academic/Education

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

Chip Technology

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

Nanoelectronics

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Solution-grown nanowires make the best lasers April 14th, 2015

Water makes wires even more nano: Rice University lab extends meniscus-mask process to make sub-10 nanometer paths April 6th, 2015

Demonstration of 50GHz Ge Waveguide Electro-Absorption Modulator April 2nd, 2015

Announcements

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Research partnerships

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE