Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Glasgow key player in 26M European project to develop next generation nanotransistor chips

Abstract:
The University of Glasgow is playing a key role in a 26M (23m) European project called MODERN looking at how to design the next generation computer chips - using variable and unreliable nanotransistors.

Glasgow key player in 26M European project to develop next generation nanotransistor chips

Glasgow | Posted on June 10th, 2010

Transistors are the tiny on-off switches which are the building blocks of all electronic circuits and computer chips and have been steadily decreasing in size for the past 50 years.

However, the smaller transistors become, the more atomic-scale variations in their size and structure affect their performance and thus the reliability of a whole circuit.

This increased variability is a problem which presents a huge barrier to the continued scaling of microchips and the development of ever-more powerful computers and electronic systems.

The focus of MODERN (MOdeling and DEsign of Reliable, process variation-aware Nanoelectronic devices, circuits and systems) is to develop new design tools and methodology for transistors and circuits at the nanoscale which will enable the manufacturing of reliable, low cost, low electromagnetic interference, high-yield complex silicon chips and corresponding products using unreliable and variable devices.

Currently the lead semiconductor manufacturer is producing microchips with transistors less than 30 nanometres in size - by comparison a human hair is around 100,000 nanometres wide - but future transistors will have to be even smaller if computers are to continue to increase in power.

Professor Asen Asenov, a device modelling expert in Electronics and Electrical Engineering and the leading world authority in statistical complementary metal-oxide semiconductor variability, is leading Glasgow's involvement in the project which is worth 1.5m to the University and comprises 28 European partners.

The MODERN team was assembled in response to a funding call by the European Nanoelectronics Initiative Advisory Council (ENIAC).

Support for Glasgow's involvement was made possible thanks to special funding package from the Engineering and Physical Sciences Research Council (ESPRC) and Scottish Enterprise.

In the MODERN consortium the University of Glasgow is providing key expertise in the physical simulation of statistical variability and reliability, statistical compact model extraction and statistical circuit simulation.

The simulations will be conducted using leading edge variability simulation tools developed in the Glasgow Device Modelling Group over the last 10 years and will involve a recently established spin-out company called Gold Standard Simulation which will be providing services to the MODERN project.

Prof Asenov said: "We invested heavily in variability research and in the development of variability simulation tools at a time when the industry was not fully aware of the gravity of the forthcoming variability problem. Now we are in the position to make significant contribution in tackling the variability challenge".

David Jack, Project manager at Scottish Enterprise, said: "This project will reinforce the University of Glasgow's position at the forefront of technology which will be built into many new electronic products. The formation of spin-out company, Gold Standard Simulations Ltd, demonstrates that Scotland's growing businesses have a strong opportunity to lead the electronics industry of the future."

EPSRC Chief Executive, Dave Delpy, said: "Working with Scottish Enterprise we are delighted to have enabled the UK to participate in this ambitious and potentially high impact project. This collaboration is an excellent example of the union of world leading research and a delivery partner that can provide powerful economic impact and accelerates our path to prosperity."

More information about MODERN is available at www.eniac-modern.org

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow
Media Relations Office
0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Possible Futures

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Research partnerships

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic