Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Walls Falling Faster for Solid-State Memory

Abstract:
After running a series of complex computer simulations, researchers have found that flaws in the structure of magnetic nanoscale wires play an important role in determining the operating speed of novel devices using such nanowires to store and process information. The finding*, made by researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, and the University of Paris XI, will help to deepen the physical understanding and guide the interpretation of future experiments of these next-generation devices.

Walls Falling Faster for Solid-State Memory

Washington, DC | Posted on June 10th, 2010

Magnetic nanowires store information in discrete bands of magnetic spins. One can imagine the nanowire like a straw sucking up and holding the liquid of a meticulously layered chocolate and vanilla milkshake, with the chocolate segments representing 1s and the vanilla 0s. The boundaries between these layers are called domain walls. Researchers manipulate the information stored on the nanowire using an electrical current to push the domain walls, and the information they enclose, through the wire and past immobile read and write heads.

Interpretations of experiments seeking to measure how domain walls move have largely ignored the effects of "disorder"—usually the result of defects or impurities in the structure of the nanowires. To see how disorder affects the motion of these microscopic magnetic domains, NIST researchers and their colleagues introduced disorder into their computer simulations.

Their simulations showed that disorder, which causes friction within the nanowires, can increase the rate at which a current can move domain walls.

According to NIST physicist Mark Stiles, friction can cause the domain walls to move faster because they need to lose energy in order to move down the wire.

For example, when a gyroscope spins, it resists the force of gravity. If a little friction is introduced into the gyroscope's bearing, the gyroscope will fall over more quickly. Similarly, in the absence of damping, a domain wall will only move from one side of the nanowire to the other. Disorder within the nanowire enables the domain walls to lose energy, which gives them the freedom to "fall" down the length of the wire as they move back and forth.

"We can say that the domain wall is moving as if it were in a system that has considerably greater effective damping than the actual damping," says NIST physicist and lead researcher Hongki Min. "This increase in the effective damping is significant enough that it should affect the interpretation of most future domain wall experiments."

* H. Min, R.D. McMichael, M.J. Donahue, J. Miltat and M.D. Stiles. Effects of disorder and internal dynamics on vortex wall propagation. Phys. Rev. Lett. 104, 217201. May 26, 2010. prl.aps.org/abstract/PRL/v104/i21/e217201.

####

For more information, please click here

Contacts:
Media Contact: Mark Esser, (301) 975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project