Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imec significantly reduces cost of germanium-based thermophotovoltaic cells

Imecís germanium-based thermophotovoltaic cell with an optimized front and rear surface finishing
Imecís germanium-based thermophotovoltaic cell with an optimized front and rear surface finishing

Abstract:
Imec presents an improved processing technique for germanium-based thermophotovoltaic (TPV) cells resulting in significant reduction of cell cost, an essential step to develop a market for thermophotovoltaic applications. Imec's newly developed TPV cells are fabricated on germanium substrates with an optimized surface, specifically designed and manufactured for this application.

Imec significantly reduces cost of germanium-based thermophotovoltaic cells

Leuven, Belgium | Posted on June 9th, 2010

Thermophotovoltaic cells convert radiation from heat sources with a temperature lower than the sun's temperature. TPV cells are ideally suited to be used in an industrial context, for example to generate electricity from waste heat released during steel or glass production. Alternatively, TPV cells can be added to domestic heating systems to co-generate electricity besides hot water. TPV cells may therefore reduce the waste and hence increase the efficiency of domestic heating systems.

However, due to the overall complexity of a full TPV system and the relatively high cost of existing suitable cells, TPV systems are yet to find entrance to industrial and consumer applications. Imec's newly developed fabrication process is an important first step in opening up the market potential for this very promising technology.

The emission peak of selective emitters typically used in TPV systems is close to the bandgap of germanium. Therefore, germanium photovoltaic devices are well suited as receivers for this type of systems. Germanium-based TPV cells were up to now fabricated on epi-ready substrates marketed for the epitaxial growth of III-V layers. However, Imec's processing method does not involve any epitaxial deposition steps, as the emitter is formed by diffusion and passivation obtained by using amorphous Si. During a research program, specifically designed Ge substrates for this application were manufactured and tested. Spectral response measurements comparing the traditional TPV cells starting from epi-ready substrates with TPV cells defined on specifically engineered Ge substrates show that the latter have a remarkably better quantum efficiency. This directly translates into a higher waste heat to electricity conversion efficiency.

Jef Poortmans, Director Photovoltaics at imec: "Imec's research into photovoltaics aims at finding techniques to fabricate cost efficient and more efficient solar cells. We have built up a strong expertise in silicon solar cells of more than 25 years. We successfully used this knowledge for our TPV research. We applied imec's proprietary surface passivation techniques, novel contacting technologies and material knowledge to improve the quantum efficiency of our TPV cells, resulting in higher cell performance and cost reduction."

####

About imec
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. In 2009, imec's revenue (P&L) was 275 million euro.

Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nutĒ), imec Belgium (imec vzw supported by the Flemish Government), imec the Netherlands (Stichting imec Nederland, part of Holst Centre which is supported by the Dutch Government) and imec Taiwan (imec Taiwan Co.).

For more information, please click here

Contacts:
Katrien Marent, Director of External Communications, T: +32 16 28 18 80, Mobile : +32 474 30 28 66,

Barbara Kalkis, Maestro Marketing & PR, T: +1 408 996 9975,

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcements

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Energy

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission Ė September 11, 2015 September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Solar/Photovoltaic

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic