Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A New Approach to Finding and Removing Defects in Graphene

Removing impurities on the atomic scale
 Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated.  Credit: Mike Cohea/Brown University
Removing impurities on the atomic scale Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated. Credit: Mike Cohea/Brown University

Abstract:
In a paper in Nature Chemistry, Vivek Shenoy and colleagues pinpointed noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. The researchers also propose how to make that technique more efficient by precisely applying hydrogen - rather than heat - to remove the impurities.

A New Approach to Finding and Removing Defects in Graphene

Providence, RI | Posted on June 8th, 2010

Graphene, a carbon sheet that is one-atom thick, may be at the center of the next revolution in material science. These ultrathin sheets hold great potential for a variety of applications from replacing silicon in solar cells to cooling computer chips.

Despite its vast promise, graphene and its derivatives "are materials people understand little about," said Vivek Shenoy, professor of engineering at Brown University. "The more we can understand their properties, the more (technological) possibilities that will be opened to us."

Shenoy and a team of U.S. researchers have gained new insights into these mysterious materials. The team, in a paper in Nature Chemistry, pinpoints the atomic configurations of noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. Building from that discovery, the researchers propose how to make that technique more efficient by outlining precisely how to apply hydrogen — rather than heat — to remove impurities in the sheets.

The sheets produced by graphene-oxide reduction are two-dimensional, honeycomb-looking planes of carbon. Most of the atoms in the lattice are carbon, which is what scientists want. But interwoven in the structure are also oxygen and hydrogen atoms, which disrupt the uniformity of the sheet. Apply enough heat to the lattice, and some of those oxygen atoms bond with hydrogen atoms, which can be removed as water. But some oxygen atoms are more stubborn.

Shenoy, joined by Brown graduate student Akbar Bagri and colleagues from Rutgers University and the University of Texas-Dallas, used molecular dynamic simulations to observe the atomic configuration of the graphene lattice and figure out why the remaining oxygen atoms remained in the structure. They found that the holdout oxygen atoms had formed double bonds with carbon atoms, a very stable arrangement that produces irregular holes in the lattice.

The oxygen atoms that form double bonds with carbon "have very low energy," Shenoy said. "They're unreactive. It's hard to get them out."

Now that they understand the configuration of the resistant oxygen atoms in the graphene, the researchers say adding hydrogen atoms in prescribed amounts and at defined locations is the best way to further reduce the graphene oxide. One promising technique, they write in the paper, is to introduce hydrogen where the oxygen atoms have bonded with the carbon atoms and formed the larger holes. The oxygen and hydrogen should pair up (as hydroxyls) and leave the lattice, in essence "healing the hole," Shenoy said.

Another approach is to remove the oxygen impurities by focusing on the areas where carbonyls — carbon atoms that are double-bonded to oxygen atoms — have formed. By adding hydrogen, the researchers theorize, the oxygen atoms can be peeled away in the form of water.

The researchers next plan to experiment with the hydrogen treatment techniques as well as to investigate the properties of graphene oxide "in its own right," Shenoy said.

The research was funded by the National Science Foundation and the Semiconductor Research Corporation's Nanotechnology Research Initiative. Other authors on the paper include Cecilia Mattevi and Manish Chhowalla from Rutgers (both now at Imperial College in London), Muge Acik and Yves Chabal from the University of Texas-Dallas.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Videos/Movies

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

A billion holes can make a battery November 10th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Nanoelectronics

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Solar/Photovoltaic

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE