Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A New Approach to Finding and Removing Defects in Graphene

Removing impurities on the atomic scale
 Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated.  Credit: Mike Cohea/Brown University
Removing impurities on the atomic scale Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated. Credit: Mike Cohea/Brown University

Abstract:
In a paper in Nature Chemistry, Vivek Shenoy and colleagues pinpointed noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. The researchers also propose how to make that technique more efficient by precisely applying hydrogen - rather than heat - to remove the impurities.

A New Approach to Finding and Removing Defects in Graphene

Providence, RI | Posted on June 8th, 2010

Graphene, a carbon sheet that is one-atom thick, may be at the center of the next revolution in material science. These ultrathin sheets hold great potential for a variety of applications from replacing silicon in solar cells to cooling computer chips.

Despite its vast promise, graphene and its derivatives "are materials people understand little about," said Vivek Shenoy, professor of engineering at Brown University. "The more we can understand their properties, the more (technological) possibilities that will be opened to us."

Shenoy and a team of U.S. researchers have gained new insights into these mysterious materials. The team, in a paper in Nature Chemistry, pinpoints the atomic configurations of noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. Building from that discovery, the researchers propose how to make that technique more efficient by outlining precisely how to apply hydrogen — rather than heat — to remove impurities in the sheets.

The sheets produced by graphene-oxide reduction are two-dimensional, honeycomb-looking planes of carbon. Most of the atoms in the lattice are carbon, which is what scientists want. But interwoven in the structure are also oxygen and hydrogen atoms, which disrupt the uniformity of the sheet. Apply enough heat to the lattice, and some of those oxygen atoms bond with hydrogen atoms, which can be removed as water. But some oxygen atoms are more stubborn.

Shenoy, joined by Brown graduate student Akbar Bagri and colleagues from Rutgers University and the University of Texas-Dallas, used molecular dynamic simulations to observe the atomic configuration of the graphene lattice and figure out why the remaining oxygen atoms remained in the structure. They found that the holdout oxygen atoms had formed double bonds with carbon atoms, a very stable arrangement that produces irregular holes in the lattice.

The oxygen atoms that form double bonds with carbon "have very low energy," Shenoy said. "They're unreactive. It's hard to get them out."

Now that they understand the configuration of the resistant oxygen atoms in the graphene, the researchers say adding hydrogen atoms in prescribed amounts and at defined locations is the best way to further reduce the graphene oxide. One promising technique, they write in the paper, is to introduce hydrogen where the oxygen atoms have bonded with the carbon atoms and formed the larger holes. The oxygen and hydrogen should pair up (as hydroxyls) and leave the lattice, in essence "healing the hole," Shenoy said.

Another approach is to remove the oxygen impurities by focusing on the areas where carbonyls — carbon atoms that are double-bonded to oxygen atoms — have formed. By adding hydrogen, the researchers theorize, the oxygen atoms can be peeled away in the form of water.

The researchers next plan to experiment with the hydrogen treatment techniques as well as to investigate the properties of graphene oxide "in its own right," Shenoy said.

The research was funded by the National Science Foundation and the Semiconductor Research Corporation's Nanotechnology Research Initiative. Other authors on the paper include Cecilia Mattevi and Manish Chhowalla from Rutgers (both now at Imperial College in London), Muge Acik and Yves Chabal from the University of Texas-Dallas.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Videos/Movies

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Nanoelectronics

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Announcements

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Solar/Photovoltaic

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE