Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A New Approach to Finding and Removing Defects in Graphene

Removing impurities on the atomic scale
 Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated.  Credit: Mike Cohea/Brown University
Removing impurities on the atomic scale Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated. Credit: Mike Cohea/Brown University

Abstract:
In a paper in Nature Chemistry, Vivek Shenoy and colleagues pinpointed noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. The researchers also propose how to make that technique more efficient by precisely applying hydrogen - rather than heat - to remove the impurities.

A New Approach to Finding and Removing Defects in Graphene

Providence, RI | Posted on June 8th, 2010

Graphene, a carbon sheet that is one-atom thick, may be at the center of the next revolution in material science. These ultrathin sheets hold great potential for a variety of applications from replacing silicon in solar cells to cooling computer chips.

Despite its vast promise, graphene and its derivatives "are materials people understand little about," said Vivek Shenoy, professor of engineering at Brown University. "The more we can understand their properties, the more (technological) possibilities that will be opened to us."

Shenoy and a team of U.S. researchers have gained new insights into these mysterious materials. The team, in a paper in Nature Chemistry, pinpoints the atomic configurations of noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. Building from that discovery, the researchers propose how to make that technique more efficient by outlining precisely how to apply hydrogen rather than heat to remove impurities in the sheets.

The sheets produced by graphene-oxide reduction are two-dimensional, honeycomb-looking planes of carbon. Most of the atoms in the lattice are carbon, which is what scientists want. But interwoven in the structure are also oxygen and hydrogen atoms, which disrupt the uniformity of the sheet. Apply enough heat to the lattice, and some of those oxygen atoms bond with hydrogen atoms, which can be removed as water. But some oxygen atoms are more stubborn.

Shenoy, joined by Brown graduate student Akbar Bagri and colleagues from Rutgers University and the University of Texas-Dallas, used molecular dynamic simulations to observe the atomic configuration of the graphene lattice and figure out why the remaining oxygen atoms remained in the structure. They found that the holdout oxygen atoms had formed double bonds with carbon atoms, a very stable arrangement that produces irregular holes in the lattice.

The oxygen atoms that form double bonds with carbon "have very low energy," Shenoy said. "They're unreactive. It's hard to get them out."

Now that they understand the configuration of the resistant oxygen atoms in the graphene, the researchers say adding hydrogen atoms in prescribed amounts and at defined locations is the best way to further reduce the graphene oxide. One promising technique, they write in the paper, is to introduce hydrogen where the oxygen atoms have bonded with the carbon atoms and formed the larger holes. The oxygen and hydrogen should pair up (as hydroxyls) and leave the lattice, in essence "healing the hole," Shenoy said.

Another approach is to remove the oxygen impurities by focusing on the areas where carbonyls carbon atoms that are double-bonded to oxygen atoms have formed. By adding hydrogen, the researchers theorize, the oxygen atoms can be peeled away in the form of water.

The researchers next plan to experiment with the hydrogen treatment techniques as well as to investigate the properties of graphene oxide "in its own right," Shenoy said.

The research was funded by the National Science Foundation and the Semiconductor Research Corporation's Nanotechnology Research Initiative. Other authors on the paper include Cecilia Mattevi and Manish Chhowalla from Rutgers (both now at Imperial College in London), Muge Acik and Yves Chabal from the University of Texas-Dallas.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Videos/Movies

Graphene under pressure August 26th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Argonne discovery yields self-healing diamond-like carbon August 7th, 2016

Possible Futures

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic