Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A New Approach to Finding and Removing Defects in Graphene

Removing impurities on the atomic scale
 Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated.  Credit: Mike Cohea/Brown University
Removing impurities on the atomic scale Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated. Credit: Mike Cohea/Brown University

Abstract:
In a paper in Nature Chemistry, Vivek Shenoy and colleagues pinpointed noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. The researchers also propose how to make that technique more efficient by precisely applying hydrogen - rather than heat - to remove the impurities.

A New Approach to Finding and Removing Defects in Graphene

Providence, RI | Posted on June 8th, 2010

Graphene, a carbon sheet that is one-atom thick, may be at the center of the next revolution in material science. These ultrathin sheets hold great potential for a variety of applications from replacing silicon in solar cells to cooling computer chips.

Despite its vast promise, graphene and its derivatives "are materials people understand little about," said Vivek Shenoy, professor of engineering at Brown University. "The more we can understand their properties, the more (technological) possibilities that will be opened to us."

Shenoy and a team of U.S. researchers have gained new insights into these mysterious materials. The team, in a paper in Nature Chemistry, pinpoints the atomic configurations of noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. Building from that discovery, the researchers propose how to make that technique more efficient by outlining precisely how to apply hydrogen — rather than heat — to remove impurities in the sheets.

The sheets produced by graphene-oxide reduction are two-dimensional, honeycomb-looking planes of carbon. Most of the atoms in the lattice are carbon, which is what scientists want. But interwoven in the structure are also oxygen and hydrogen atoms, which disrupt the uniformity of the sheet. Apply enough heat to the lattice, and some of those oxygen atoms bond with hydrogen atoms, which can be removed as water. But some oxygen atoms are more stubborn.

Shenoy, joined by Brown graduate student Akbar Bagri and colleagues from Rutgers University and the University of Texas-Dallas, used molecular dynamic simulations to observe the atomic configuration of the graphene lattice and figure out why the remaining oxygen atoms remained in the structure. They found that the holdout oxygen atoms had formed double bonds with carbon atoms, a very stable arrangement that produces irregular holes in the lattice.

The oxygen atoms that form double bonds with carbon "have very low energy," Shenoy said. "They're unreactive. It's hard to get them out."

Now that they understand the configuration of the resistant oxygen atoms in the graphene, the researchers say adding hydrogen atoms in prescribed amounts and at defined locations is the best way to further reduce the graphene oxide. One promising technique, they write in the paper, is to introduce hydrogen where the oxygen atoms have bonded with the carbon atoms and formed the larger holes. The oxygen and hydrogen should pair up (as hydroxyls) and leave the lattice, in essence "healing the hole," Shenoy said.

Another approach is to remove the oxygen impurities by focusing on the areas where carbonyls — carbon atoms that are double-bonded to oxygen atoms — have formed. By adding hydrogen, the researchers theorize, the oxygen atoms can be peeled away in the form of water.

The researchers next plan to experiment with the hydrogen treatment techniques as well as to investigate the properties of graphene oxide "in its own right," Shenoy said.

The research was funded by the National Science Foundation and the Semiconductor Research Corporation's Nanotechnology Research Initiative. Other authors on the paper include Cecilia Mattevi and Manish Chhowalla from Rutgers (both now at Imperial College in London), Muge Acik and Yves Chabal from the University of Texas-Dallas.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Videos/Movies

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Solar/Photovoltaic

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE