Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne Labs battery symposium looks to electric cars with a 500-mile range

Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.
Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.

Abstract:
What we may need more than new energy is a better way to store what we have.

That was the focus of Argonne National Laboratory's recent symposium on next-generation batteries.

By Alex Baumgardner

Argonne Labs battery symposium looks to electric cars with a 500-mile range

Chicago, IL | Posted on June 8th, 2010

The recent symposium, Computational Perspectives, drew scientists and engineers from the public and private sector across the world.

While sustainable energy alternatives continue to dominate conversations in environmental and industry circles, Argonne's battery research offers the promise of electric cars with 500-miles of power, though battery development for them may take another decade.

"We're in research, and we're always looking for the next big thing," said Daniel Abraham, a leading researcher in the field of lithium-ion batteries and materials scientist at Argonne.

During this week's next generation battery symposium at Argonne, scientists and engineers focused on finding ways to increase the energy stored in a battery with innovative new battery materials - including just plain air.

Advanced batteries would bring longer running times to cell phone and laptops. But one of the biggest beneficiaries of this research could be the electric car. Argonne has tested its lithium-ion battery in a Toyota Prius, running it on an on-site track the equivalent of the distance to California without ever having to stop.

Currently, Argonne's engineers remain focused on lithium-ion batteries, which have already doubled the capacity of the more common acid based batteries. But through funding granted by the American Recovery and Reinvestment Act, the lab now has $8.8 million to develop high-performance battery systems, such as lithium-air systems. These new systems could potentially increase battery life and power exponentially.

What makes these battery systems work is the substance used in the battery. Common acid batteries use a water-based conductor but the acid causes the water to decompose quickly, limiting power and lifespan. Lithium-ion and futuristic lithium-air batteries allow for longer battery life and increased voltage because of the components themselves can last longer and allow for higher conductivity.

"The benefit is tremendous" with lithium-air said Dr. Khalil Amine, one of Argonne's top material scientists. "We're talking about 10 times more energy. We're not talking about doubling, which is already a big breakthrough. This is the future."

It's grants such as the one from American Recovery that allow Argonne to remain at the forefront of this type of research, said Argonne's senior accounts manager Jeff Chamberlain. He said it's what keeps industries relying on government labs for technological advancement and technology transfer.

"It's different for industry," Chamberlain said. "For these publicly traded companies that live quarter to quarter, they can't afford to make this type of investment to solve this type of problem."

Lithium-air batteries in the early stages of development would compress air and increase a stable reaction surface to generate electrons that deliver stored energy from batteries.

"It's intrinsic, it's not something we design," Amine said. "Lithium air has almost [the energy] of gasoline. So you can expect 500 miles in a charge with the electric car. Now it's 100 miles with the Leaf from Nissan, this December."

Still, these advancements are in the development stages, and won't likely be seen for at least a decade. But the advancement in technology is only a matter of time. Amine estimated by 2020, approximately 25 percent of the cars on the road will be electric.

But three major challenges remain, preventing these new battery systems from reaching consumers quickly, Abraham said. The first is advancing the power potential of the battery but safety and cost also need to be addressed.

"One of the complaints of these lithium-ion systems now is that they're kind of expensive," Abraham said. "Not many people buy the Prius because it's expensive. We are doing research to reduce the cost of these batteries."

####

For more information, please click here

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Possible Futures

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Automotive/Transportation

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Events/Classes

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Nanomechanics to Host High-Speed Nanoindentation Webinar June 21: Leading nanomechanical technology provider will host educational webinar focused on high-speed nanoindentation and mechanical properties mapping June 12th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project