Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne Labs battery symposium looks to electric cars with a 500-mile range

Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.
Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.

Abstract:
What we may need more than new energy is a better way to store what we have.

That was the focus of Argonne National Laboratory's recent symposium on next-generation batteries.

By Alex Baumgardner

Argonne Labs battery symposium looks to electric cars with a 500-mile range

Chicago, IL | Posted on June 8th, 2010

The recent symposium, Computational Perspectives, drew scientists and engineers from the public and private sector across the world.

While sustainable energy alternatives continue to dominate conversations in environmental and industry circles, Argonne's battery research offers the promise of electric cars with 500-miles of power, though battery development for them may take another decade.

"We're in research, and we're always looking for the next big thing," said Daniel Abraham, a leading researcher in the field of lithium-ion batteries and materials scientist at Argonne.

During this week's next generation battery symposium at Argonne, scientists and engineers focused on finding ways to increase the energy stored in a battery with innovative new battery materials - including just plain air.

Advanced batteries would bring longer running times to cell phone and laptops. But one of the biggest beneficiaries of this research could be the electric car. Argonne has tested its lithium-ion battery in a Toyota Prius, running it on an on-site track the equivalent of the distance to California without ever having to stop.

Currently, Argonne's engineers remain focused on lithium-ion batteries, which have already doubled the capacity of the more common acid based batteries. But through funding granted by the American Recovery and Reinvestment Act, the lab now has $8.8 million to develop high-performance battery systems, such as lithium-air systems. These new systems could potentially increase battery life and power exponentially.

What makes these battery systems work is the substance used in the battery. Common acid batteries use a water-based conductor but the acid causes the water to decompose quickly, limiting power and lifespan. Lithium-ion and futuristic lithium-air batteries allow for longer battery life and increased voltage because of the components themselves can last longer and allow for higher conductivity.

"The benefit is tremendous" with lithium-air said Dr. Khalil Amine, one of Argonne's top material scientists. "We're talking about 10 times more energy. We're not talking about doubling, which is already a big breakthrough. This is the future."

It's grants such as the one from American Recovery that allow Argonne to remain at the forefront of this type of research, said Argonne's senior accounts manager Jeff Chamberlain. He said it's what keeps industries relying on government labs for technological advancement and technology transfer.

"It's different for industry," Chamberlain said. "For these publicly traded companies that live quarter to quarter, they can't afford to make this type of investment to solve this type of problem."

Lithium-air batteries in the early stages of development would compress air and increase a stable reaction surface to generate electrons that deliver stored energy from batteries.

"It's intrinsic, it's not something we design," Amine said. "Lithium air has almost [the energy] of gasoline. So you can expect 500 miles in a charge with the electric car. Now it's 100 miles with the Leaf from Nissan, this December."

Still, these advancements are in the development stages, and won't likely be seen for at least a decade. But the advancement in technology is only a matter of time. Amine estimated by 2020, approximately 25 percent of the cars on the road will be electric.

But three major challenges remain, preventing these new battery systems from reaching consumers quickly, Abraham said. The first is advancing the power potential of the battery but safety and cost also need to be addressed.

"One of the complaints of these lithium-ion systems now is that they're kind of expensive," Abraham said. "Not many people buy the Prius because it's expensive. We are doing research to reduce the cost of these batteries."

####

For more information, please click here

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Arrowhead Expands Management Team with Appointment of Susan Boynton as Vice President Global Regulatory Affairs October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Energy

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

Automotive/Transportation

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Events/Classes

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Oxford Instruments launches 3rd annual Indian nanotechnology seminars in Kolkata and Delhi - sharing expertise with Nanotechnology researchers in India September 25th, 2014

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Leti’s 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

Contributing to the spirit of the IYCR 2014 September 24th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

New chip promising for tumor-targeting research September 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE