Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne Labs battery symposium looks to electric cars with a 500-mile range

Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.
Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.

Abstract:
What we may need more than new energy is a better way to store what we have.

That was the focus of Argonne National Laboratory's recent symposium on next-generation batteries.

By Alex Baumgardner

Argonne Labs battery symposium looks to electric cars with a 500-mile range

Chicago, IL | Posted on June 8th, 2010

The recent symposium, Computational Perspectives, drew scientists and engineers from the public and private sector across the world.

While sustainable energy alternatives continue to dominate conversations in environmental and industry circles, Argonne's battery research offers the promise of electric cars with 500-miles of power, though battery development for them may take another decade.

"We're in research, and we're always looking for the next big thing," said Daniel Abraham, a leading researcher in the field of lithium-ion batteries and materials scientist at Argonne.

During this week's next generation battery symposium at Argonne, scientists and engineers focused on finding ways to increase the energy stored in a battery with innovative new battery materials - including just plain air.

Advanced batteries would bring longer running times to cell phone and laptops. But one of the biggest beneficiaries of this research could be the electric car. Argonne has tested its lithium-ion battery in a Toyota Prius, running it on an on-site track the equivalent of the distance to California without ever having to stop.

Currently, Argonne's engineers remain focused on lithium-ion batteries, which have already doubled the capacity of the more common acid based batteries. But through funding granted by the American Recovery and Reinvestment Act, the lab now has $8.8 million to develop high-performance battery systems, such as lithium-air systems. These new systems could potentially increase battery life and power exponentially.

What makes these battery systems work is the substance used in the battery. Common acid batteries use a water-based conductor but the acid causes the water to decompose quickly, limiting power and lifespan. Lithium-ion and futuristic lithium-air batteries allow for longer battery life and increased voltage because of the components themselves can last longer and allow for higher conductivity.

"The benefit is tremendous" with lithium-air said Dr. Khalil Amine, one of Argonne's top material scientists. "We're talking about 10 times more energy. We're not talking about doubling, which is already a big breakthrough. This is the future."

It's grants such as the one from American Recovery that allow Argonne to remain at the forefront of this type of research, said Argonne's senior accounts manager Jeff Chamberlain. He said it's what keeps industries relying on government labs for technological advancement and technology transfer.

"It's different for industry," Chamberlain said. "For these publicly traded companies that live quarter to quarter, they can't afford to make this type of investment to solve this type of problem."

Lithium-air batteries in the early stages of development would compress air and increase a stable reaction surface to generate electrons that deliver stored energy from batteries.

"It's intrinsic, it's not something we design," Amine said. "Lithium air has almost [the energy] of gasoline. So you can expect 500 miles in a charge with the electric car. Now it's 100 miles with the Leaf from Nissan, this December."

Still, these advancements are in the development stages, and won't likely be seen for at least a decade. But the advancement in technology is only a matter of time. Amine estimated by 2020, approximately 25 percent of the cars on the road will be electric.

But three major challenges remain, preventing these new battery systems from reaching consumers quickly, Abraham said. The first is advancing the power potential of the battery but safety and cost also need to be addressed.

"One of the complaints of these lithium-ion systems now is that they're kind of expensive," Abraham said. "Not many people buy the Prius because it's expensive. We are doing research to reduce the cost of these batteries."

####

For more information, please click here

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Automotive/Transportation

GLOBALFOUNDRIES Introduces New Automotive Platform to Fuel Tomorrow’s Connected Car: AutoPro™ provides a full range of technologies and manufacturing services to help carmakers harness the power of silicon for a new era of ‘connected intelligence’ October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

Events/Classes

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project