Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne Labs battery symposium looks to electric cars with a 500-mile range

Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.
Plug-in hybrid vehicles stand to be major beneficiaries of futuistic battery research at Argonne National Laboratory. Experts at Argonne predict new batteries will mean a car reach 500 miles per plug-in within the next 20 years.

Abstract:
What we may need more than new energy is a better way to store what we have.

That was the focus of Argonne National Laboratory's recent symposium on next-generation batteries.

By Alex Baumgardner

Argonne Labs battery symposium looks to electric cars with a 500-mile range

Chicago, IL | Posted on June 8th, 2010

The recent symposium, Computational Perspectives, drew scientists and engineers from the public and private sector across the world.

While sustainable energy alternatives continue to dominate conversations in environmental and industry circles, Argonne's battery research offers the promise of electric cars with 500-miles of power, though battery development for them may take another decade.

"We're in research, and we're always looking for the next big thing," said Daniel Abraham, a leading researcher in the field of lithium-ion batteries and materials scientist at Argonne.

During this week's next generation battery symposium at Argonne, scientists and engineers focused on finding ways to increase the energy stored in a battery with innovative new battery materials - including just plain air.

Advanced batteries would bring longer running times to cell phone and laptops. But one of the biggest beneficiaries of this research could be the electric car. Argonne has tested its lithium-ion battery in a Toyota Prius, running it on an on-site track the equivalent of the distance to California without ever having to stop.

Currently, Argonne's engineers remain focused on lithium-ion batteries, which have already doubled the capacity of the more common acid based batteries. But through funding granted by the American Recovery and Reinvestment Act, the lab now has $8.8 million to develop high-performance battery systems, such as lithium-air systems. These new systems could potentially increase battery life and power exponentially.

What makes these battery systems work is the substance used in the battery. Common acid batteries use a water-based conductor but the acid causes the water to decompose quickly, limiting power and lifespan. Lithium-ion and futuristic lithium-air batteries allow for longer battery life and increased voltage because of the components themselves can last longer and allow for higher conductivity.

"The benefit is tremendous" with lithium-air said Dr. Khalil Amine, one of Argonne's top material scientists. "We're talking about 10 times more energy. We're not talking about doubling, which is already a big breakthrough. This is the future."

It's grants such as the one from American Recovery that allow Argonne to remain at the forefront of this type of research, said Argonne's senior accounts manager Jeff Chamberlain. He said it's what keeps industries relying on government labs for technological advancement and technology transfer.

"It's different for industry," Chamberlain said. "For these publicly traded companies that live quarter to quarter, they can't afford to make this type of investment to solve this type of problem."

Lithium-air batteries in the early stages of development would compress air and increase a stable reaction surface to generate electrons that deliver stored energy from batteries.

"It's intrinsic, it's not something we design," Amine said. "Lithium air has almost [the energy] of gasoline. So you can expect 500 miles in a charge with the electric car. Now it's 100 miles with the Leaf from Nissan, this December."

Still, these advancements are in the development stages, and won't likely be seen for at least a decade. But the advancement in technology is only a matter of time. Amine estimated by 2020, approximately 25 percent of the cars on the road will be electric.

But three major challenges remain, preventing these new battery systems from reaching consumers quickly, Abraham said. The first is advancing the power potential of the battery but safety and cost also need to be addressed.

"One of the complaints of these lithium-ion systems now is that they're kind of expensive," Abraham said. "Not many people buy the Prius because it's expensive. We are doing research to reduce the cost of these batteries."

####

For more information, please click here

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Automotive/Transportation

June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Events/Classes

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project