Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NYU Chemist Seeman Wins Kavli Prize in Nanoscience

New York University Chemist Nadrian Seeman has been awarded the 2010 Kavli Prize in Nanoscience for his creation of robotic devices that have the potential to create new materials a billionth of a meter in size. Photo credit: Mike Summers
New York University Chemist Nadrian Seeman has been awarded the 2010 Kavli Prize in Nanoscience for his creation of robotic devices that have the potential to create new materials a billionth of a meter in size. Photo credit: Mike Summers

Abstract:
New York University Chemist Nadrian Seeman has been awarded the 2010 Kavli Prize in Nanoscience for his creation of robotic devices that have the potential to create new materials a billionth of a meter in size.

NYU Chemist Seeman Wins Kavli Prize in Nanoscience

New York, NY | Posted on June 4th, 2010

The Kavli Prize is given every two years for "outstanding research and seminal advances" in astrophysics, nanoscience, and neuroscience. The laureates will each receive a scroll, a gold medal, and share of the $1,000,000 prize for each of the three fields. Seeman shares the nanoscience prize with Donald Eigler of IBM's Almaden Research Center. The Kavli Prize is a partnership of the Norwegian Academy of Science and Letters, the Kavli Foundation, and the Norwegian Ministry of Education and Research.

For more on the Kavli Prize and a complete list of this year's Kavli Prize Laureates, visit www.kavliprize.no

The 2010 Kavli Prize Laureates were announced today by the President of the Norwegian Academy of Science and Letters, Nils Christian Stenseth, in Oslo, Norway and transmitted live to the World Science Festival, taking place June 2-6 in New York City. Recipients are chosen by three prize committees comprised of distinguished scientists recommended by the Chinese Academy of Sciences, the French Academy of Sciences, the Max Planck Society, the U.S. National Academy of Sciences, and the Royal Society.

Seeman, the Margaret and Herman Sokol Professor of Chemistry at NYU, founded and developed the field of DNA nanotechnology—which is now pursued by laboratories across the globe—more than a quarter century ago. His creations allow him to arrange pieces and form specific molecules with some precision - similar to the way a robotic automobile factory can be told what kind of car to make. Seeman's work led the Christian Science Monitor to conclude that "nanotechnology may have found its Henry Ford."

In the past year, Seeman's laboratory has made two significant breakthroughs in the field of nanoscience.

The first is the creation of three-dimensional DNA structures, a scientific advance bridging the molecular world to the world where we live. To do this, Seeman and his colleagues created DNA crystals by making synthetic sequences of DNA that have the ability to self-assemble into a series of 3D triangle-like motifs. The creation of the crystals was dependent on putting "sticky ends"—small cohesive sequences on each end of the motif—that attach to other molecules and place them in a set order and orientation. The make-up of these sticky ends allows the motifs to attach to each other in a programmed fashion. A promising avenue for this work is in nanoelectronics, in which products are built from components no bigger than single molecules. Currently, these products are built with 2D components. Given the enhanced flexibility and density that 3D components would yield, manufacturers could build parts that are smaller and closer together as well as more sophisticated in design.

The second is a DNA assembly line, created with colleagues at China's Nanjing University, which has the potential to build novel materials efficiently on the nanoscale.

"An industrial assembly line includes a factory, workers, and a conveyor system," said Seeman. "We have emulated each of those features using DNA components."

The assembly line relies on three DNA-based components. The first is DNA origami, a composition that uses a few hundred short DNA strands to direct a very long DNA strand to form structures to any desired shape. DNA origami serves as the assembly line's framework and also houses its track. The second are three DNA machines, or cassettes, that serve as programmable cargo-donating devices; they are attached to the origami in fixed positions. Changing the cassette's control sequences allows the researchers to enable or prevent the donation of the cargoes to the growing construct by altering the position of a nanoscale robot arm. The third is a DNA "walker," which is analogous to the chassis of a car being assembled. It moves along the assembly line's track, stopping at the DNA machines to collect and carry the DNA cargo components, which consist of distinct metallic nanoparticles.

As the walker moves along the pathway prescribed by the origami tile track, it encounters sequentially the assembly line's three DNA devices. These devices can be switched between an "on" state, allowing its cargo to be transferred to the walker, and an "off" state, in which no transfer occurs. In this way, the DNA product at the end of the assembly line may include cargo picked up from one, two, or three of the DNA machines.

Seeman, who has been on the NYU faculty since 1988, has a bachelor of science from the University of Chicago (1966) and a Ph.D. in crystallography/biochemistry from the University of Pittsburgh (1970). He did postdoctoral training at Columbia University and at MIT. NYU has recognized his contributions with the Margaret and Herman Sokol Faculty Award in the Sciences.

Seeman was the founding president of the International Society for Nanoscale Science, Computation, and Engineering. He has received the American Chemical Society's Nichols Medal as well as the Sidhu Award from the Pittsburgh Diffraction Society, a Popular Science Magazine Science and Technology Award, the Feynman Prize in Nanotechnology, a Discover Magazine Emerging Technology Award, the Tulip Award in DNA-based computing, a Nanotech Briefs Nano50 Innovator Award, the World Technology Network Award in biotechnology, the Alexander Rich Medal from MIT, and the Frontiers of Science Award from the Society of Cosmetic Chemists. In April, he was awarded a Guggenheim Fellowship, under which he will write a textbook on structural DNA nanotechnology.

The Kavli Prize Award Ceremony will take place on September 7 at Oslo Concert Hall. This will be followed by a banquet in honor of the Kavli Prize Laureates at Oslo City Hall hosted by the Norwegian Government.

####

For more information, please click here

Contacts:
Press Contact
James Devitt
(212) 998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Academic/Education

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

New chip promising for tumor-targeting research September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE