Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NYU Chemist Seeman Wins Kavli Prize in Nanoscience

New York University Chemist Nadrian Seeman has been awarded the 2010 Kavli Prize in Nanoscience for his creation of robotic devices that have the potential to create new materials a billionth of a meter in size. Photo credit: Mike Summers
New York University Chemist Nadrian Seeman has been awarded the 2010 Kavli Prize in Nanoscience for his creation of robotic devices that have the potential to create new materials a billionth of a meter in size. Photo credit: Mike Summers

Abstract:
New York University Chemist Nadrian Seeman has been awarded the 2010 Kavli Prize in Nanoscience for his creation of robotic devices that have the potential to create new materials a billionth of a meter in size.

NYU Chemist Seeman Wins Kavli Prize in Nanoscience

New York, NY | Posted on June 4th, 2010

The Kavli Prize is given every two years for "outstanding research and seminal advances" in astrophysics, nanoscience, and neuroscience. The laureates will each receive a scroll, a gold medal, and share of the $1,000,000 prize for each of the three fields. Seeman shares the nanoscience prize with Donald Eigler of IBM's Almaden Research Center. The Kavli Prize is a partnership of the Norwegian Academy of Science and Letters, the Kavli Foundation, and the Norwegian Ministry of Education and Research.

For more on the Kavli Prize and a complete list of this year's Kavli Prize Laureates, visit www.kavliprize.no

The 2010 Kavli Prize Laureates were announced today by the President of the Norwegian Academy of Science and Letters, Nils Christian Stenseth, in Oslo, Norway and transmitted live to the World Science Festival, taking place June 2-6 in New York City. Recipients are chosen by three prize committees comprised of distinguished scientists recommended by the Chinese Academy of Sciences, the French Academy of Sciences, the Max Planck Society, the U.S. National Academy of Sciences, and the Royal Society.

Seeman, the Margaret and Herman Sokol Professor of Chemistry at NYU, founded and developed the field of DNA nanotechnology—which is now pursued by laboratories across the globe—more than a quarter century ago. His creations allow him to arrange pieces and form specific molecules with some precision - similar to the way a robotic automobile factory can be told what kind of car to make. Seeman's work led the Christian Science Monitor to conclude that "nanotechnology may have found its Henry Ford."

In the past year, Seeman's laboratory has made two significant breakthroughs in the field of nanoscience.

The first is the creation of three-dimensional DNA structures, a scientific advance bridging the molecular world to the world where we live. To do this, Seeman and his colleagues created DNA crystals by making synthetic sequences of DNA that have the ability to self-assemble into a series of 3D triangle-like motifs. The creation of the crystals was dependent on putting "sticky ends"—small cohesive sequences on each end of the motif—that attach to other molecules and place them in a set order and orientation. The make-up of these sticky ends allows the motifs to attach to each other in a programmed fashion. A promising avenue for this work is in nanoelectronics, in which products are built from components no bigger than single molecules. Currently, these products are built with 2D components. Given the enhanced flexibility and density that 3D components would yield, manufacturers could build parts that are smaller and closer together as well as more sophisticated in design.

The second is a DNA assembly line, created with colleagues at China's Nanjing University, which has the potential to build novel materials efficiently on the nanoscale.

"An industrial assembly line includes a factory, workers, and a conveyor system," said Seeman. "We have emulated each of those features using DNA components."

The assembly line relies on three DNA-based components. The first is DNA origami, a composition that uses a few hundred short DNA strands to direct a very long DNA strand to form structures to any desired shape. DNA origami serves as the assembly line's framework and also houses its track. The second are three DNA machines, or cassettes, that serve as programmable cargo-donating devices; they are attached to the origami in fixed positions. Changing the cassette's control sequences allows the researchers to enable or prevent the donation of the cargoes to the growing construct by altering the position of a nanoscale robot arm. The third is a DNA "walker," which is analogous to the chassis of a car being assembled. It moves along the assembly line's track, stopping at the DNA machines to collect and carry the DNA cargo components, which consist of distinct metallic nanoparticles.

As the walker moves along the pathway prescribed by the origami tile track, it encounters sequentially the assembly line's three DNA devices. These devices can be switched between an "on" state, allowing its cargo to be transferred to the walker, and an "off" state, in which no transfer occurs. In this way, the DNA product at the end of the assembly line may include cargo picked up from one, two, or three of the DNA machines.

Seeman, who has been on the NYU faculty since 1988, has a bachelor of science from the University of Chicago (1966) and a Ph.D. in crystallography/biochemistry from the University of Pittsburgh (1970). He did postdoctoral training at Columbia University and at MIT. NYU has recognized his contributions with the Margaret and Herman Sokol Faculty Award in the Sciences.

Seeman was the founding president of the International Society for Nanoscale Science, Computation, and Engineering. He has received the American Chemical Society's Nichols Medal as well as the Sidhu Award from the Pittsburgh Diffraction Society, a Popular Science Magazine Science and Technology Award, the Feynman Prize in Nanotechnology, a Discover Magazine Emerging Technology Award, the Tulip Award in DNA-based computing, a Nanotech Briefs Nano50 Innovator Award, the World Technology Network Award in biotechnology, the Alexander Rich Medal from MIT, and the Frontiers of Science Award from the Society of Cosmetic Chemists. In April, he was awarded a Guggenheim Fellowship, under which he will write a textbook on structural DNA nanotechnology.

The Kavli Prize Award Ceremony will take place on September 7 at Oslo Concert Hall. This will be followed by a banquet in honor of the Kavli Prize Laureates at Oslo City Hall hosted by the Norwegian Government.

####

For more information, please click here

Contacts:
Press Contact
James Devitt
(212) 998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Molecular Machines

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project