Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Replicating nature's design principles to create customized nanofabrics

This 3D surface rendering demonstrates the same ripples and folds at the nano level as would be found in macroscale fishing nets. Image courtesty of Adam Feinberg/Harvard University.
This 3D surface rendering demonstrates the same ripples and folds at the nano level as would be found in macroscale fishing nets. Image courtesty of Adam Feinberg/Harvard University.

Abstract:
Discovery has potential applications in tissue regeneration and high-performance textiles

By Twig Mowatt, Wyss Institute for Biologically Inspired Engineering

Replicating nature's design principles to create customized nanofabrics

Cambridge, MA | Posted on June 3rd, 2010

In nature, cells and tissues assemble and organize themselves within a matrix of protein fibers that ultimately determines their structure and function, such as the elasticity of skin and the contractility of heart tissue. These natural design principles have now been successfully replicated in the lab by bioengineers at Harvard's Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences (SEAS).

These bioengineers have developed a new technology that may ultimately be used to regenerate heart and other tissues and to make nanometer-thick fabrics that are both strong and extremely elastic. The key breakthrough came in the development of a matrix that can assemble itself through interaction with a thermosensitive surface. The protein composition of that matrix can be customized to generate specific properties, and the nanofabric can then be lifted off as a sheet by altering temperature.

"To date it has been very difficult to replicate this extracellular matrix using manmade materials," said Adam W. Feinberg, a postdoctoral fellow who is lead author of "Surface-Initiated Assembly of Protein Nanofabrics," which appears in the advance on-line publication of Nano Letters. "But we thought if cells can build this matrix at the surface of their membranes, maybe we can build it ourselves on a surface too. We were thrilled to see that we could," Feinberg said.

Coauthor Kit Parker is a core faculty member of the Wyss Institute, the Thomas D. Cabot Associate Professor of Applied Science and associate professor of bioengineering at SEAS, and a Principal Faculty member of the Harvard Stem Cell Institute.

In the area of tissue regeneration, their technology, which is termed protein nanofabrics, represents a significant step forward. Current methods for regenerating tissue typically involve using synthetic polymers to create a scaffolding. But this approach can cause negative side effects as the polymers degrade. By contrast, nanofabrics are made from the same proteins as normal tissue, and thus the body can degrade them with no ill effects once they are no longer needed. Initial results have produced strands of heart muscle similar to the papillary muscle, which may lead to new strategies for repair and regeneration throughout the heart.

"With nanofabrics, we can control thread count, orientation, and composition, and that capability allows us to create novel tissue engineering scaffolds that direct regeneration," said Parker. "It also enables us to exploit the nanoscale properties of these proteins in new ways beyond medical applications. There are a broad range of applications for this technology using natural, or designer, synthetic proteins."

High-performance textiles are the second main application for this technology. By altering the type of protein used in the matrix, researchers can manipulate thread count, fiber orientation, and other properties to create fabrics with extraordinary properties. Today, an average rubber band can be stretched 500 to 600 percent, but future textiles may be stretchable by as much as 1,500 percent. Future applications for such textiles are as diverse as form-fitting clothing, bandages that accelerate healing, and industrial manufacturing.

The research is part of a larger program in Nanotextiles at the Wyss Institute and SEAS. In the same issue of Nano Letters, Parker's team also reported on the development of a new technology that fabricates nanofibers using a high-speed, rotating jet and nozzle. This invention has potential applications ranging from artificial organs and tissue regeneration to clothing and air filters.

"The Wyss Institute is very proud to be associated with two such significant discoveries," said Donald E. Ingber, M.D., Ph.D., Founding Director of the Wyss Institute. "These are great examples of realizing our mission of using nature's design principles to develop technologies that will have a huge impact on the way we live."

The researchers acknowledge the support of Harvard's Nanoscale Science and Engineering Center at Harvard, Materials Research Science and Engineering Center, the Harvard Center for Nanoscale Systems, the Defense Advanced Research Projects Agency, and the Wyss Institute.

####

For more information, please click here

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Self Assembly

Four Scientists With Major Contributions to Research at Brookhaven Lab Named American Physical Society Fellows March 17th, 2015

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Nanomedicine

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Discoveries

Graphene reduces wear of alumina ceramic March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Textiles/Clothing

Scientists discover gecko secret March 16th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts February 3rd, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Nanobiotechnology

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

Super-resolution microscopes reveal the link between genome packaging and cell pluripotency: A study using super-resolution microscopy reveals that our genome is not regularly packaged and links these packaging differences to stem cell state March 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE