Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > EU-funded team drives biocomputing advances

Abstract:
EU-funded scientists have succeeded in demonstrating the feasibility of components for a kind of 'biocomputer', paving the way for new advances in the field of bioengineering. The scientists, from the Chemistry Department at the University of Liège in Belgium and the Institute of Chemistry at the Hebrew University of Jerusalem in Israel, set out the details of their work in an article in the journal Nature Nanotechnology.

EU-funded team drives biocomputing advances

EU | Posted on June 1st, 2010

EU support for the research came from the MOLOC ('Molecular logic circuits') project, which received just over EUR 2 million of its EUR 2.67 million budget from the 'Information and communication technologies' (ICT) Theme of the Seventh Framework Programme (FP7).

For the study, led by Professor Itamar Willner of the Hebrew University of Jerusalem, the researchers theoretically developed and experimentally demonstrated that artificial catalytic nucleic acids known as DNAzymes and their substrates can form a viable platform for the logic operations that are key to computational processes.

The work could aid in the development of applications in nanomedicine, for example, where the ability to carry out logic operations at the molecular level could facilitate the analysis of a disease and trigger the response of therapeutic agents.

'Biological systems that are capable of performing computational operations could be of use in bioengineering and nanomedicine, and DNA [deoxyribonucleic acid] and other biomolecules have already been used as active components in biocomputational circuits,' the researchers write.

'However, for biocomputational circuits to be useful for applications it will be necessary to develop a library of computing elements, to demonstrate the modular coupling of these elements, and to demonstrate that this approach is scalable.'

The Belgian-Israeli team created a DNA-based computational platform that draws on two libraries of nucleic acids, one of which is made up of subunits of DNAzymes. The second library comprises the DNAzymes' substrates.

'We demonstrate that the library of DNAzymes, designed and synthesised by Professor Willner's team, allows for the realisation of a complete ensemble of logic gates which can be used to compute any Boolean function,' explained Françoise Remacle of the University of Liège, who is also the MOLOC project coordinator.

'We also show that [the] dynamic assembly [of these gates] into circuits can be directed by selective inputs. Moreover, the design allows for the amplification of outputs.'

The MOLOC project got underway at the beginning of 2008 and is scheduled to draw to a close at the end of this year. The aim of the initiative is to design and demonstrate the feasibility and advantages of logic circuits in which the basic element is a single molecule (or assemblies of atoms or molecules) acting as a logic circuit. These systems differ from those that use a molecule as a switch.

In addition to the University of Liège and the Hebrew University of Jerusalem, MOLOC's project partners are the Institute of Solid State Research (IFF) at the Forschungszentrum Jülich, the Max Planck Institute for Quantum Optics, the Department of Chemistry at Heinrich-Heine University Düsseldorf, the Institute of Applied Optics at the Technische Universität Darmstadt in Germany, all based in Germany, and the Kavli Institute of Nanoscience at Delft University of Technology in the Netherlands.

For more information, please visit:

University of Liège: www.ulg.ac.be

Nature Nanotechnology: www.nature.com/nnano/index.html

MOLOC project: www.moloc.ulg.ac.be/

Funding for ICT research under FP7: cordis.europa.eu/fp7/ict/

Document Reference: Elbaz, J., et al. (2010) DNA computing circuits using libraries of DNAzyme subunits. Nature Nanotechnology (in press), published online 30 May. DOI: 10.1038/NNANO.2010.88

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanomedicine

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

Announcements

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Nanobiotechnology

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE