Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Faster computers with nanotechnology

Abstract:
The silicon transistors in your computer may be replaced in ten years by transistors based on carbon nanotubes. This is what scientists at the University of Gothenburg are hoping - they have developed a method to control the nanotubes during production.

By Krister Svahn

Faster computers with nanotechnology

Gothenburg, Sweden | Posted on May 31st, 2010

Silicon is subject to certain limitations, and industry is looking for a replacement. The electronics industry has net annual sales of over USD 200 billion, and this means that the development is being fuelled by powerful forces.

Carbon nanotubes

Scientist Johannes Svensson from the Department of Physics at the University of Gothenburg has investigated the manufacture and use of carbon nanotubes in his PhD thesis.

Faster and smaller

"I don't believe that it will be cheaper to build transistors from another material than silicon, but carbon nanotubes can be used to produce smaller and faster components. This will also result in computers that consume less energy" says Johannes Svensson.

Amazing development

The amazing development in computer power that has taken place after the invention of the integrated circuit in the 1950s has been made possible by the transistor, which is the most important component of all processors, becoming ever-faster.

Increase the speed

The most common semiconductor material in transistors is silicon, since it is cheap and easy to process. But silicon has its limitations. As the size of the transistors is reduced in order to increase their speed, problems arise that lead to, among other things, increased energy consumption and large variation in the transistor properties.

Pure carbon

By exchanging the silicon in the channel for a carbon nanotube, the transistors can be made both smaller and faster than today's transistors. A carbon nanotube is a molecule in form of a hollow cylinder with a diameter of around a nanometer (roughly 1/50,000 of the width of a human hair) which consists of pure carbon. Some carbon nanotubes are semiconducting, and this means that they can be used in transistors, although there are several problems that must be solved before they can be connected together to form large circuits.

Electric guidance

"Carbon nanotubes grow randomly and it is not possible to control either their position or direction. Therefore I have applied an electrical field to guide the tubes as they grow," says Johannes Svensson.

Built his own

One of the effects of the electric field is that most of the carbon nanotubes lie in the same direction.

"In order to show that it is possible to build electronic components that contain only carbon nanotubes, I have built a transistor which not only has a carbon nanotube as its channel, but also another nanotube which is used as the electrode that controls the current."

Good contacts

Another problem that must be solved when integrating nanotubes into larger circuits is the difficulty of manufacturing good metal contacts for the tubes. Johannes' research has shown that the properties of the contacts depend on the diameter of the nanotubes. Choosing the correct diameter will allow good contacts with a low resistance to be achieved.

The thesis Carbon Nanotube Transistors: Nanotube Growth, Contact Properties and Novel Devices was successfully defended at a disputation held on 7 May 2010.

Link to the thesis hdl.handle.net/2077/21859

####

For more information, please click here

Contacts:
Johannes Svensson
Department of Physics
University of Gothenburg
Mobile: +46 768 539891
Tel: +46 31 772 3435


Krister Svahn
+46 31 786 49 12

Copyright © University of Gothenburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Announcements

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic