Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Faster computers with nanotechnology

Abstract:
The silicon transistors in your computer may be replaced in ten years by transistors based on carbon nanotubes. This is what scientists at the University of Gothenburg are hoping - they have developed a method to control the nanotubes during production.

By Krister Svahn

Faster computers with nanotechnology

Gothenburg, Sweden | Posted on May 31st, 2010

Silicon is subject to certain limitations, and industry is looking for a replacement. The electronics industry has net annual sales of over USD 200 billion, and this means that the development is being fuelled by powerful forces.

Carbon nanotubes

Scientist Johannes Svensson from the Department of Physics at the University of Gothenburg has investigated the manufacture and use of carbon nanotubes in his PhD thesis.

Faster and smaller

"I don't believe that it will be cheaper to build transistors from another material than silicon, but carbon nanotubes can be used to produce smaller and faster components. This will also result in computers that consume less energy" says Johannes Svensson.

Amazing development

The amazing development in computer power that has taken place after the invention of the integrated circuit in the 1950s has been made possible by the transistor, which is the most important component of all processors, becoming ever-faster.

Increase the speed

The most common semiconductor material in transistors is silicon, since it is cheap and easy to process. But silicon has its limitations. As the size of the transistors is reduced in order to increase their speed, problems arise that lead to, among other things, increased energy consumption and large variation in the transistor properties.

Pure carbon

By exchanging the silicon in the channel for a carbon nanotube, the transistors can be made both smaller and faster than today's transistors. A carbon nanotube is a molecule in form of a hollow cylinder with a diameter of around a nanometer (roughly 1/50,000 of the width of a human hair) which consists of pure carbon. Some carbon nanotubes are semiconducting, and this means that they can be used in transistors, although there are several problems that must be solved before they can be connected together to form large circuits.

Electric guidance

"Carbon nanotubes grow randomly and it is not possible to control either their position or direction. Therefore I have applied an electrical field to guide the tubes as they grow," says Johannes Svensson.

Built his own

One of the effects of the electric field is that most of the carbon nanotubes lie in the same direction.

"In order to show that it is possible to build electronic components that contain only carbon nanotubes, I have built a transistor which not only has a carbon nanotube as its channel, but also another nanotube which is used as the electrode that controls the current."

Good contacts

Another problem that must be solved when integrating nanotubes into larger circuits is the difficulty of manufacturing good metal contacts for the tubes. Johannes' research has shown that the properties of the contacts depend on the diameter of the nanotubes. Choosing the correct diameter will allow good contacts with a low resistance to be achieved.

The thesis Carbon Nanotube Transistors: Nanotube Growth, Contact Properties and Novel Devices was successfully defended at a disputation held on 7 May 2010.

Link to the thesis hdl.handle.net/2077/21859

####

For more information, please click here

Contacts:
Johannes Svensson
Department of Physics
University of Gothenburg
Mobile: +46 768 539891
Tel: +46 31 772 3435


Krister Svahn
+46 31 786 49 12

Copyright © University of Gothenburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Possible Futures

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Chip Technology

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Announcements

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project