Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Third Frontier award will support production of 'game-changing' multi-tasking nanomaterial

Abstract:
A $3 million Ohio Third Frontier award to the University of Dayton Research Institute will fund the scale-up and production of a "game-changing" new nanomaterial that will allow composites to multitask - a wind turbine tower that can de-ice its own blades in winter, or store energy to release on a calm day, powering a grid even when its blades are not moving. Or a military vehicle whose armor can serve as a battery - powering some of the vehicle's electrical components.

Third Frontier award will support production of 'game-changing' multi-tasking nanomaterial

Dayton, OH | Posted on May 31st, 2010

Nicknamed "fuzzy fiber" by its inventor at UDRI, Nano Adaptive Hybrid Fabric (NAHF-XTM) is the first tailored nanomaterial capable of being produced in sizes and quantities large enough to make them affordable and viable for large-scale commercial use. When incorporated into resins, fuzzy fibers enable composites to be tailored for electrical and thermal conductivity, chemical and biological sensing, energy storage and conversion, thermal management and other properties.

"This is going to disrupt the way we think about materials," said NAHF-XTM inventor Khalid Lafdi, Group Leader for Carbon Materials at the Research Institute. "From now on, instead of thinking ‘mono,' we will think ‘multi' - multiscale, multifunctional, multitasking." Aside from serving simply as structural material, composites made with fuzzy fiber can work as batteries, sensors, heaters, supercapacitors, structural health monitors and other systems whose operations are normally performed by additional components, Lafdi added. "By manufacturing structural material that can serve multiple functions, fewer parts are needed for any given application, which means reduced cost, lighter weight and greater efficiency."

Lafdi called the material "game-changing" because of its ability to be produced in continuous sheets to desired sizes like other fabrics. "Everybody is growing carbon nanotubes on substrates," Lafdi said. "We're the only people who are producing them on a large-scale and continuous process, and not just in batches. This means we can produce the material at a low cost, and it also means we can produce pieces big enough to cover an aircraft."

Lafdi and his team have been producing 500 feet of 12-inch-wide fabric per day at a pilot plant in UDRI's Shroyer Park Center. The Third Frontier award, announced May 26 in Columbus, will be matched by UDRI and Ohio collaborators Goodrich, Owens Corning and Renegade Materials to fund the creation and equipment of a full-scale production facility for the hybrid fabric. The new facility, to be located within Dayton's Aerospace Hub, will be equipped to produce 60-inch-wide fabric. Goodrich expects to apply the technology in the marketplace first in commercial aerospace applications.

The NAHF-XTM technology was pioneered and perfected over seven years with funding from the Air Force, Army, aerospace industry and Third Frontier, said Brian Rice, Division Head for Multi-Scale Composites and Polymers at UDRI. After successfully controlling growth of carbon nanotubes on individual carbon fibers, researchers accomplished the same on a type of carbon-fiber yarn and eventually on engineered textiles. The breakthrough was in overcoming issues of uniformity and precisely controlling growth of the nanotubes, Rice said.

"Various industries have been replacing metals with composites in structures and components because of their lighter weight and durability. But in doing so, electrical and thermal conductivity inherent to metals is lost. By growing nanotubes on carbon fibers used in composites in a very specific manner, those properties are built back in - and the composites also can be tailored for specialized mechanical properties."

Rice said the hybrid fabric production facility will serve as a cornerstone for Ohio's Aerospace Hub in Dayton by helping to attract and connect new and existing businesses related to aerospace, sensing technologies and advanced materials. One targeted application will be unmanned aerial vehicles weighing less than 150 pounds. "We'd like to begin making ‘smart' structural materials for UAVs that also serve as the plane's communication, power and sensor systems. Not having to add a battery or external sensors means less weight on the plane."

The program is expected to create 70 high-tech jobs in Ohio during its first three years and 165 jobs in the second five years.

####

About University of Dayton Research Institute
Helping customers achieve research and development goals and solve challenging technological problems has been the focus of the University of Dayton Research Institute since its inception more than 50 years ago.



Our nearly 400 full-time staff members view themselves as partners in our customers’ success, which allows us to combine creative research expertise with a strong customer focus and an impeccable attention to schedules, budgets, intellectual property rights and quality deliverables.



A strong customer base has allowed us to create an $85 million research enterprise. Our materials research capability is the second largest in the nation among universities, and our engineering research capability ranks within the top twenty.

For more information, please click here

Contacts:

Contact Us



300 College Park
Dayton, OH 45469-0101

937-229-2113
937-229-2888 (fax)

Copyright © University of Dayton Research Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Jobs

Secretary Vilsack Announces Partnership to Advance Commercial Potential of Cellulosic Nanomaterial from Wood December 11th, 2013

Cutting Away at the NRC's Research Capability December 6th, 2013

Project aims to mass-produce 'nanopetals' for sensors, batteries October 22nd, 2013

Governor Cuomo Announces 'Nano Utica' $1.5 Billion Public-Private Investment That Will Make the Mohawk Valley New York's Next Major Hub of Nanotech Research October 12th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Sensors

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Materials/Metamaterials

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Military

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

Energy

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Automotive/Transportation

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Aerospace/Space

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE