Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > To Attack H1N1, Other Flu Viruses, Gold Nanorods Deliver Potent Payload

These human bronchial epithelial cells have been transfected with nanoplexes, developed by scientists at UB and CDC, that are uniformly distributed surrounding the cell nuclei.
These human bronchial epithelial cells have been transfected with nanoplexes, developed by scientists at UB and CDC, that are uniformly distributed surrounding the cell nuclei.

Abstract:
Joint research by UB and CDC could lead to new generation of antiviral medicines

To Attack H1N1, Other Flu Viruses, Gold Nanorods Deliver Potent Payload

Buffalo, NY | Posted on May 30th, 2010

Future pandemics of seasonal flu, H1N1 and other drug-resistant viruses may be thwarted by a potent, immune-boosting payload that is effectively delivered to cells by gold nanorods, report scientists at the University at Buffalo and the U.S. Centers for Disease Control and Prevention. The work is published in the current issue of the Proceedings of the National Academy of Sciences.

"This joint research by UB and the CDC has the potential to usher in a new generation of antiviral medicines to aggressively treat a broad range of infectious diseases, from H1N1 to avian flu and perhaps Ebola, that are becoming increasingly resistant to the medicines used against them," says UB team leader Paras Prasad, PhD, executive director of the UB Institute for Lasers, Photonics and Biophotonics (ILPB) and SUNY Distinguished Professor in the departments of Chemistry, Physics, Electrical Engineering and Medicine.

The collaborative work between UB and CDC came together through the work of Krishnan Chakravarthy, an MD/PhD candidate at UB and the paper's first author. This research constitutes part of his doctoral degree work that focused on host response to influenza infection and novel drug delivery strategies.

The paper describes the single strand RNA molecule, which prompts a strong immune response against the influenza virus by ramping up the host's cellular production of interferons, proteins that inhibit viral replication.

But, like most RNA molecules, they are unstable when delivered into cells. The gold nanorods produced at UB act as an efficient vehicle to deliver into cells the powerful immune activator molecule.

"It all boils down to how we can deliver the immune activator," says Suryaprakesh Sambhara, DVM, PhD, in CDC's Influenza Division and a co-author on the paper. "The UB researchers had an excellent delivery system. Dr. Prasad and his team are well-known for their contributions to nanoparticle delivery systems."

A key advantage is gold's biocompatibility

"The gold nanorods protect the RNA from degrading once inside cells, while allowing for more selected targeting of cells," said co-author Paul R. Knight III, MD, Chakravarthy's thesis advisor; professor of anesthesiology, microbiology and infectious diseases in the UB School of Medicine and Biomedical Sciences; and director of its MD/PhD program.

"This work demonstrates that the modulation of host response is going to be critical to the next generation of anti-viral therapies," Chakravarthy explains. "The novelty of this approach is that most of these kinds of RNA viruses share a common host-response immune pathway; that is what we have targeted with our nanoparticle therapy. By enhancing the host immune response, we avoid the difficulty of ongoing viral resistance generated through mutations."

Diseases that could be effectively targeted with this new approach include any viruses that are susceptible to the innate immune response that type 1 interferons trigger, Prasad notes.

Based on these in vitro results, the UB and CDC researchers are beginning animal studies.

"This collaboration has been extraordinary as two disparate research groups at UB and a third at the CDC have managed to maintain progress toward a common goal: treatment of influenza," says co-author Adela Bonoiu, PhD, UB research assistant professor at ILPB.

Important funding for the UB institute portion of the research was provided by the John R. Oishei Foundation, which helped pave the way for new stimulus funding UB received recently from the National Institutes of Health to further develop this strategy. The goal is to work toward an Investigational New Drug filing with the FDA.

Additional funding was provided by the NIH, the Air Force Office of Scientific Research and the National Vaccine Program Office of the U.S. Department of Health and Human Services.

Co-authors are Earl J. Bergey, PhD, UB research associate professor of chemistry; Hong Ding, PhD, postdoctoral associate, and Rui Hu, formerly a visiting researcher of UB's ILPB, and William Davis, Priya Ranjan, J. Bowzard and Jacqueline M. Katz of the Influenza Division of the CDC.

####

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-4605

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Nanomedicine

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanobiotechnology

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Research partnerships

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project