Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > To Attack H1N1, Other Flu Viruses, Gold Nanorods Deliver Potent Payload

These human bronchial epithelial cells have been transfected with nanoplexes, developed by scientists at UB and CDC, that are uniformly distributed surrounding the cell nuclei.
These human bronchial epithelial cells have been transfected with nanoplexes, developed by scientists at UB and CDC, that are uniformly distributed surrounding the cell nuclei.

Abstract:
Joint research by UB and CDC could lead to new generation of antiviral medicines

To Attack H1N1, Other Flu Viruses, Gold Nanorods Deliver Potent Payload

Buffalo, NY | Posted on May 30th, 2010

Future pandemics of seasonal flu, H1N1 and other drug-resistant viruses may be thwarted by a potent, immune-boosting payload that is effectively delivered to cells by gold nanorods, report scientists at the University at Buffalo and the U.S. Centers for Disease Control and Prevention. The work is published in the current issue of the Proceedings of the National Academy of Sciences.

"This joint research by UB and the CDC has the potential to usher in a new generation of antiviral medicines to aggressively treat a broad range of infectious diseases, from H1N1 to avian flu and perhaps Ebola, that are becoming increasingly resistant to the medicines used against them," says UB team leader Paras Prasad, PhD, executive director of the UB Institute for Lasers, Photonics and Biophotonics (ILPB) and SUNY Distinguished Professor in the departments of Chemistry, Physics, Electrical Engineering and Medicine.

The collaborative work between UB and CDC came together through the work of Krishnan Chakravarthy, an MD/PhD candidate at UB and the paper's first author. This research constitutes part of his doctoral degree work that focused on host response to influenza infection and novel drug delivery strategies.

The paper describes the single strand RNA molecule, which prompts a strong immune response against the influenza virus by ramping up the host's cellular production of interferons, proteins that inhibit viral replication.

But, like most RNA molecules, they are unstable when delivered into cells. The gold nanorods produced at UB act as an efficient vehicle to deliver into cells the powerful immune activator molecule.

"It all boils down to how we can deliver the immune activator," says Suryaprakesh Sambhara, DVM, PhD, in CDC's Influenza Division and a co-author on the paper. "The UB researchers had an excellent delivery system. Dr. Prasad and his team are well-known for their contributions to nanoparticle delivery systems."

A key advantage is gold's biocompatibility

"The gold nanorods protect the RNA from degrading once inside cells, while allowing for more selected targeting of cells," said co-author Paul R. Knight III, MD, Chakravarthy's thesis advisor; professor of anesthesiology, microbiology and infectious diseases in the UB School of Medicine and Biomedical Sciences; and director of its MD/PhD program.

"This work demonstrates that the modulation of host response is going to be critical to the next generation of anti-viral therapies," Chakravarthy explains. "The novelty of this approach is that most of these kinds of RNA viruses share a common host-response immune pathway; that is what we have targeted with our nanoparticle therapy. By enhancing the host immune response, we avoid the difficulty of ongoing viral resistance generated through mutations."

Diseases that could be effectively targeted with this new approach include any viruses that are susceptible to the innate immune response that type 1 interferons trigger, Prasad notes.

Based on these in vitro results, the UB and CDC researchers are beginning animal studies.

"This collaboration has been extraordinary as two disparate research groups at UB and a third at the CDC have managed to maintain progress toward a common goal: treatment of influenza," says co-author Adela Bonoiu, PhD, UB research assistant professor at ILPB.

Important funding for the UB institute portion of the research was provided by the John R. Oishei Foundation, which helped pave the way for new stimulus funding UB received recently from the National Institutes of Health to further develop this strategy. The goal is to work toward an Investigational New Drug filing with the FDA.

Additional funding was provided by the NIH, the Air Force Office of Scientific Research and the National Vaccine Program Office of the U.S. Department of Health and Human Services.

Co-authors are Earl J. Bergey, PhD, UB research associate professor of chemistry; Hong Ding, PhD, postdoctoral associate, and Rui Hu, formerly a visiting researcher of UB's ILPB, and William Davis, Priya Ranjan, J. Bowzard and Jacqueline M. Katz of the Influenza Division of the CDC.

####

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-4605

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Nanomedicine

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanobiotechnology

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

Super-resolution microscopes reveal the link between genome packaging and cell pluripotency: A study using super-resolution microscopy reveals that our genome is not regularly packaged and links these packaging differences to stem cell state March 12th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE