Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ‘Tattoo’ may help diabetics track their blood sugar

Abstract:
Chemical engineers are working on carbon nanotubes that could be injected under the skin to reveal blood glucose levels

By Anne Trafton

‘Tattoo’ may help diabetics track their blood sugar

Cambridge, MA | Posted on May 28th, 2010

People with type I diabetes must prick their fingers several times a day to test their blood sugar level. Though the pain is minor, the chore interferes with daily life.

"They never really escape it," says Paul Barone, a postdoctoral researcher in MIT's Department of Chemical Engineering. Barone and professor Michael Strano are working on a new type of blood glucose monitor that could not only eliminate the need for finger pricks but also offer more accurate readings.

"Diabetes is an enormous problem, global in scope, and despite decades of engineering advances, our ability to accurately measure glucose in the human body still remains quite primitive," says Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering. "It is a life-and-death issue for a growing number of people."

Strano and Barone's sensing system consists of a "tattoo" of nanoparticles designed to detect glucose, injected below the skin. A device similar to a wristwatch would be worn over the tattoo, displaying the patient's glucose levels.

Continuous glucose detection

A 2008 study (1) in the New England Journal of Medicine showed that continuous monitoring helped adult type I diabetes patients who were at least 25 years old better control their blood glucose levels. However, existing wearable devices are not as accurate as the finger-prick test and have to be recalibrated once or twice a day — a process that still involves pricking the finger.

"The most problematic consequences of diabetes result from relatively short excursions of a person's blood sugar outside of the normal physiological range, following meals, for example," says Strano. "If we can detect and prevent these excursions, we can go a long way toward reducing the devastating impact of this disease."

Most existing continuous glucose sensors work via an injection of an enzyme called glucose oxidase, which breaks down glucose. An electrode placed on the skin interacts with a by-product of that reaction, hydrogen peroxide, allowing glucose levels to be indirectly measured. However, none of those sensors have been approved for use longer than seven days at a time.

Bruce Buckingham, a professor of pediatric endocrinology at the Stanford School of Medicine and an author of the NEJM study, says glucose monitoring is definitely headed toward wearable sensors. However, he expects it will be a few years before any are approved for use without backup monitoring with a finger prick test. "As time goes on, the devices to do this should become smaller, easier to wear, and more accurate," says Buckingham, who is not involved in the MIT project.

Taking advantage of nanotubes

The technology behind the MIT sensor, described in a December 2009 issue (2) of ACS Nano, is fundamentally different from existing sensors, says Strano. The sensor is based on carbon nanotubes wrapped in a polymer that is sensitive to glucose concentrations. When this sensor encounters glucose, the nanotubes fluoresce, which can be detected by shining near-infrared light on them. Measuring the amount of fluorescence reveals the concentration of glucose.

The researchers plan to create an "ink" of these nanoparticles suspended in a saline solution that could be injected under the skin like a tattoo. The "tattoo" would last for a specified length of time, probably six months, before needing to be refreshed.

To get glucose readings, the patient would wear a monitor that shines near-infrared light on the tattoo and detects the resulting fluorescence. One advantage of this type of sensor is that, unlike some fluorescent molecules, carbon nanotubes aren't destroyed by light exposure. "You can shine the light as long as you want, and the intensity won't change," says Barone. Because of this, the sensor can give continuous readings.

Development of the nanoparticles and the wearable monitor is being funded by MIT's Deshpande Center for Technological Innovation.

Barone and Strano are now working to improve the accuracy of their sensor. Any glucose monitor must pass a test known as the Clarke Error Grid, the gold standard for glucose-sensor accuracy. The test, which compares sensor results to results from a lab-based glucose meter, needs to be very stringent, since mistakes in glucose detection can be fatal.

They are still years away from human trials, says Barone, but they may soon start trials in animals. Those tests will be key to determining the value of this approach, says Buckingham. "You don't know how good it will be until you put it in someone and see how strong the signal is," he says.

(1) content.nejm.org/cgi/content/full/NEJMoa0805017
(2) pubs.acs.org/doi/abs/10.1021/nn901025x?searchHistoryKey=&prevSearch=%255Bauthor%253A%2Bstrano%255D&journalCode=ancac3

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Nanomedicine

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Together, nanotechnology and genetic interference may tackle 'untreatable' brain tumors: Tel Aviv University researchers' groundbreaking strategy stops brain tumor cell proliferation with targeted nanoparticles February 24th, 2015

Sensors

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE