Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The search for improved carbon sponges picks up speed

More than a football field of surface area in the palm of your hand. Can scientists fashion metal-organic frameworks, seen in this illustration, into carbon-absorbing sponges? Will the material work in a power plant? Berkeley Lab scientists hope to find out soon.
More than a football field of surface area in the palm of your hand. Can scientists fashion metal-organic frameworks, seen in this illustration, into carbon-absorbing sponges? Will the material work in a power plant? Berkeley Lab scientists hope to find out soon.

Abstract:
Jeffrey Long's lab will soon host a round-the-clock, robotically choreographed hunt for carbon-hungry materials.

The Berkeley Lab chemist leads a diverse team of scientists whose goal is to quickly discover materials that can efficiently strip carbon dioxide from a power plant's exhaust, before it leaves the smokestack and contributes to climate change.

The search for improved carbon sponges picks up speed

Berkeley, CA | Posted on May 28th, 2010

They're betting on a recently discovered class of materials called metal-organic frameworks that boast a record-shattering internal surface area. A sugar cube-sized piece, if unfolded and flattened, would more than blanket a football field. The crystalline material can also be tweaked to absorb specific molecules.

The idea is to engineer this incredibly porous compound into a voracious sponge that gobbles up carbon dioxide.

And they're going for speed. The scientists hope to discover this dream material in a breakneck three years, maybe sooner. To do this, they'll create an automated system that simultaneously synthesizes hundreds of metal-organic frameworks, then screens the most promising candidates for further refinement.

"Our discovery process will be up to 100 times faster than current techniques," says Long. "We need to quickly find next-generation materials that capture and release carbon without requiring a lot of energy."

Carbon capture is the first step in carbon capture and storage, a climate change mitigation strategy that involves pumping compressed carbon dioxide captured from large stationary sources into underground rock formations that can store it for geological time scales. Many scientists, including the United Nations' Intergovernmental Panel on Climate Change, believe that the technology is key to curbing the amount of carbon dioxide that enters the atmosphere. Fossil fuels such as coal and natural gas will likely remain cheap and plentiful energy sources for decades to come — even with the continued development of renewable energy sources.

Carbon capture and storage is being tested on a large scale in only a few places worldwide. One of the biggest obstacles to industrial-scale implementation is its parasitic energy cost. Today's carbon capture materials, such as liquid amine scrubbers, sap a whopping 30 percent of the power generated by a power plant.

To overcome this, scientists are seeking alternatives that can be used again and again with minimal energy costs. It's a slow, finicky process. Promising materials such as metal-organic frameworks come in millions of variations, only a handful of which are conducive to capturing carbon. Finding just the right material may take years.

That could change. In early May, Long's team began negotiating a three-year, $3.6 million grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) to supercharge the search.

"We want to run the discovery process very rapidly and find materials that only consume 10 percent of a power plant's energy," says Long, who's working with fellow Berkeley Lab scientists Maciej Haranczyk, Eric Masanet, Jeffrey Reimer, and Berend Smit on the project. Together, they'll create a state-of-the-art production line.

A robot will automatically synthesize hundreds of metal-organic frameworks and X-ray diffraction will offer a first-pass evaluation in the search for pure new materials. Magnetic resonance spectroscopy will then ferret out the materials with the pore size distribution best suited for carbon capture.

Next comes the big test: can it capture carbon dioxide from a flue gas? High-throughout gas sorption analysis conducted using new instrumentation built by Wildcat Discovery Technologies of San Diego, California will provide the answer.

Computer algorithms will constantly churn through the resulting data and help refine the next round of synthesis. Promising materials will also be assessed to determine if any ingredients are too expensive for large-scale commercialization.

"We don't want to discover a great material and find it's so expensive that no one will use it," says Long.

As a final test, the Electric Power Research Institute will predict the utility of the best new materials in an industrial-scale carbon capture process.

"We need to find the optimum range of metal-organic frameworks for each power plant," says Long. "Ultimately, this research is intended to lead to materials worthy of large-scale testing and commercialization."

####

For more information, please click here

Contacts:
Dan Krotz
(510) 486-4019

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Videos/Movies

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Possible Futures

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Environment

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Marsden minds: Amazing projects revealed November 3rd, 2016

Industrial

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

New Book by Nobel Laureate Tells Story of Chemistry’s New Field: Fraser Stoddart explains the mechanical bond and where it is taking scientists November 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project