Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stuck Up

Noshir Pesika developed polymer-based dry adhesive structures that mimic the adhesive system on the feet of his gecko, Nikki. (Photos by Paula Burch-Celentano)
Noshir Pesika developed polymer-based dry adhesive structures that mimic the adhesive system on the feet of his gecko, Nikki. (Photos by Paula Burch-Celentano)

Abstract:
She's four years old, lives in a lab in the Boggs building and is among a family of reptiles inspiring development of a new reusable dry adhesive. She's a Tokay gecko named Nikki.

"We're working to develop a synthetic dry adhesive following the same science behind what nature has evolved," says Noshir Pesika, an assistant professor of chemical and biomolecular engineering.

By Belinda Lacoste

Stuck Up

New Orleans, LA | Posted on May 26th, 2010

When scientists began studying the gecko adhesive system, they discovered that geckos stick not by suction, or capillary forces, or by sticky substances on their toes, but by weak electromagnetic forces called van der Waals interactions.

It is the force of millions of nanoscale "split hairs" contacting a surface at once that gives the gecko a grip so strong it can hold its own body weight by a single toe, Pesika says.

Many research groups are fabricating structures of hair-like fibers attempting to replicate the gecko adhesive system.

In his laboratory, Pesika developed polymer-based dry adhesive structures that mimic the gecko adhesive system.

Along with collaborators at the University of California-Santa Barbara and Lewis & Clark College, Pesika has developed an innovative and simple technique to incorporate tilt in the hairy fibers. The angled fibers more closely duplicate the natural curve of the gecko hairs, which Pesika says exploits friction forces to enhance adhesion.

"We have structures that are already working," Pesika says. "Our aim is to further improve adhesion and simplify the processing scheme to make the technology attractive to an industrial market."

Pesika anticipates that dry adhesives may be used as self-stick notes and page tabs that would not leave a residue, as bandages that would not fall off when wet, and possibly as adhesive pads on astronaut's shoes.

They have an advantage over traditional "sticky" adhesives, Pesika says, because they are a solid material that would not collect dirt and would still adhere in water or in space, where glue would evaporate.

Belinda Lacoste is a student studying journalism in the School of Continuing Studies and a staff member who writes for the School of Science and Engineering.

####

For more information, please click here

Contacts:
Belinda Lacoste

Copyright © Tulane University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Possible Futures

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Academic/Education

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Research partnerships

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project