Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphane yields new potential

Rice researchers created these fanciful images of electron densities from their graphane-embedded quantum dot calculations. The isosurfaces depict electrons in the valance band that, in reality, would be confined within the quantum dot, and demonstrate that very little charge would leak from the hydrogen-defined boundaries of such a dot. CREDIT: EVGENI PENEV/ABHISHEK SINGH
Rice researchers created these fanciful images of electron densities from their graphane-embedded quantum dot calculations. The isosurfaces depict electrons in the valance band that, in reality, would be confined within the quantum dot, and demonstrate that very little charge would leak from the hydrogen-defined boundaries of such a dot. CREDIT: EVGENI PENEV/ABHISHEK SINGH

Abstract:
Rice physicists dig theoretical wells to mine quantum dots

Graphane yields new potential

Houston, TX | Posted on May 25th, 2010

Graphane is the material of choice for physicists on the cutting edge of materials science, and Rice University researchers are right there with the pack - and perhaps a little ahead.

Researchers mentored by Boris Yakobson, a Rice professor of mechanical engineering and materials science and of chemistry, have discovered the strategic extraction of hydrogen atoms from a two-dimensional sheet of graphane naturally opens up spaces of pure graphene that look - and act - like quantum dots.

That opens up a new world of possibilities for an ever-shrinking class of nanoelectronics that depend on the highly controllable semiconducting properties of quantum dots, particularly in the realm of advanced optics.

The theoretical work by Abhishek Singh and Evgeni Penev, both postdoctoral researchers in co-author Yakobson's group, was published online last week in the journal ACS Nano and will be on the cover of the print version in June. Rice was recently named the world's No. 1 institution for materials science research by a United Kingdom publication.

Graphene has become the Flat Stanley of materials. The one-atom-thick, honeycomb-like form of carbon may be two-dimensional, but it seems to be everywhere, touted as a solution to stepping beyond the limits of Moore's Law.

Graphane is simply graphene modified by hydrogen atoms added to both sides of the matrix, which makes it an insulator. While it's still technically only a single atom thick, graphane offers great possibilities for the manipulation of the material's semiconducting properties.

Quantum dots are crystalline molecules from a few to many atoms in size that interact with light and magnetic fields in unique ways. The size of a dot determines its band gap - the amount of energy needed to close the circuit - and makes it tunable to a precise degree. The frequencies of light and energy released by activated dots make them particularly useful for chemical sensors, solar cells, medical imaging and nanoscale circuitry.

Singh and Penev calculated that removing islands of hydrogen from both sides of a graphane matrix leaves a well with all the properties of quantum dots, which may also be useful in creating arrays of dots for many applications.

"We arrived at these ideas from an entirely different study of energy storage in a form of hydrogen adsorption on graphene," Yakobson said. "Abhishek and Evgeni realized that this phase transformation (from graphene to graphane), accompanied by the change from metal to insulator, offers a novel palette for nanoengineering."

Their work revealed several interesting characteristics. They found that when chunks of the hydrogen sublattice are removed, the area left behind is always hexagonal, with a sharp interface between the graphene and graphane. This is important, they said, because it means each dot is highly contained; calculations show very little leakage of charge into the graphane host material. (How, precisely, to remove hydrogen atoms from the lattice remains a question for materials scientists, who are working on it, they said.)

"You have an atom-like spectra embedded within a media, and then you can play with the band gap by changing the size of the dot," Singh said. "You can essentially tune the optical properties."

Along with optical applications, the dots may be useful in single-molecule sensing and could lead to very tiny transistors or semiconductor lasers, he said.

Challenges remain in figuring out how to make arrays of quantum dots in a sheet of graphane, but neither Singh nor Penev sees the obstacles as insurmountable.

"We think the major conclusions in the paper are enough to excite experimentalists," said Singh, who will soon leave Rice to become an assistant professor at the Indian Institute of Science in Bangalore. "Some are already working in the directions we explored."

"Their work is actually supporting what we're suggesting, that you can do this patterning in a controlled way," Penev said.

When might their calculations bear commercial fruit? "That's a tough question," Singh said. "It won't be that far, probably -- but there are challenges. I don't know that we can give it a time frame, but it could happen soon."

Funding from the Office of Naval Research supported the work. Computations were performed at the Department of Defense Supercomputing Resource Center at the Air Force Research Laboratory.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Quantum Dots/Rods

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

A new type of quantum bits July 29th, 2016

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic