Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-Assembling Gold Nanoparticles Use Light to Kill Tumor Cells

Abstract:
A variety of studies by numerous investigators are demonstrating that gold nanoparticles have real promise as anticancer agents. When irradiated with light, gold nanoparticles become hot quickly, hot enough to generate explosive microbubbles that will kill nearby cancer cells, a physical process known as the photothermal effect. To boost this approach, researchers at the University of California, Los Angeles, have developed a method for creating supramolecular assemblies of gold nanoparticles that function as highly efficient photothermal agents of a size designed to optimize their delivery to tumors.

Self-Assembling Gold Nanoparticles Use Light to Kill Tumor Cells

Bethesda, MD | Posted on May 22nd, 2010

Hsien-Rong Tseng and his colleagues reported their work in the journal Angewandte Chemie International Edition. Dr. Tseng is a member of the Nanosystems Biology Cancer Center, a National Cancer Institute Center for Cancer Nanotechnology Excellence.

To create their self-assembling supramolecular gold nanoparticles, the researchers took advantage of a pair of molecules, cyclodextrin and adamantine, that bind very tightly to each other. They first took gold nanoparticles, 2 nanometers in diameter, and decorated the nanoparticles' surface with adamantane.They then added two other constructs: cyclodextrin attached to a biocompatible polymer known as polyethyleneimine, and adamantane linked to polyethylene glycol, another biocompatible polymer. When combined in various ratios, these three constructs quickly assemble into nanoparticles with well defined sizes ranging from 40 to 118 nanometers in diameter. Once the complexes were purified, the researchers then attached a tumor targeting molecule to the surface of the resulting supramolecular complexes.

For this study, the investigators used the 118 nanometer gold complexes and showed that when irradiated with a laser beam, the temperature of the assemblies rapidly soared above 374° C, the temperature at which explosive microbubbles form. To test how efficiently these complexes could kill cancer cells, the researchers added them to brain tumor cells, irradiated them with light, and then measured how many cells had been killed within two hours. As a control, the researchers repeated the experiment with cells lacking the receptor for the targeting agent they added to the nanoparticles. Results from this experiment clearly showed that the targeted nanoparticles readily killed the targeted tumor cells but not the cells lacking the targeted receptor. Additional experiments showed that 2-nanometer gold nanoparticles were not nearly as effective as the supramolecular assemblies at killing the targeted cells.

This work, which is detailed in a paper titled, "Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE