Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NREL, 3M Launch Technology Partnership

NREL Principal Investigator Cheryl Kennedy first helped develop reflective coatings for concentrated solar power with 3M when she joined the Laboratory in the 1980s.  Credit: Pat Corkery
NREL Principal Investigator Cheryl Kennedy first helped develop reflective coatings for concentrated solar power with 3M when she joined the Laboratory in the 1980s. Credit: Pat Corkery

Abstract:
The U.S. Department of Energy's National Renewable Energy Laboratory and 3M, the St. Paul, Minn.-based technology company, have embarked on research and development partnerships in three key areas of clean energy innovation: thin-film photovoltaics, concentrating solar power and biofuels.

By Joe Verrengia

NREL, 3M Launch Technology Partnership

Washington, DC | Posted on May 20th, 2010

The work ranges from jointly identifying and developing critical aspects of renewable energy technology to accelerated testing of 3M designs and scaling-up successful prototypes for commercial production. The partnerships are covered in three Cooperative Research and Development Agreements, or CRADAs, which last for at least one year. The total combined value of the shared R&D covered by the agreements is $7.33 million.

With $23 billion in annual sales, 3M employs 75,000 people worldwide and has operations in more than 65 countries. It is one of the Laboratory's largest commercial partners.

"CRADAs like these with 3M are critical for achieving the marketplace impact that is the goal of NREL's work in renewable energy," NREL Senior Vice President of Commercialization and Deployment Casey Porto said. "Not only do they help shift the nation to clean energy, but they also establish and expand important partnerships for product development through technology transfer."

"3M's wide-ranging expertise and commitment in these fields makes this a key partnership for the laboratory because this type of partnership enables the creation of clean energy breakthroughs that can become products," she said.

"3M is excited for the opportunity to tap into NREL's expertise and understanding of a variety of solar modules and the interplay between the materials and systems," said Mike Roman, general manager and vice president of 3M Renewable Energy Division. "Also, NREL has pilot plant capabilities, which allow valuable application testing of 3M's biofuel separations technologies in a controllable and scalable environment."

Thin Film Solar Cells

3M and NREL will work to develop and test new moisture barrier films and flexible packaging for thin film solar cells made of semiconducting layers of CIGS, or Copper Indium Gallium Diselenide.

CIGS cells have achieved a record efficiency of 19.9 percent at NREL. But to become commercially successful, manufacturers need to both increase module performance and reduce manufacturing costs.

The solar cells are expected to work effectively for 20 years. That means they will need to be encapsulated in a flexible material that is transparent to light, but also provides durable protection — and doesn't add significant costs.

NREL will conduct accelerated stress tests, including temperature, humidity and irradiance tests, to establish failure barriers on as many as three types of 3M CIGS designs. The Lab and 3M will jointly interpret the results with the aim of establishing module standards for a 20-year lifetime.

Principal investigator Mike Kempe said much of the testing will revolve around measuring the rate of water vapor transmission in moisture barrier samples.

"We test their moisture barrier materials to determine if they give adequate protection to the CIGS cells," Kempe said. "They want expert eyes looking at these materials before they go to the PV industry."

Concentrating Solar Power

3M is developing highly reflective silvered polymer mirror reflectors as low-cost replacements for glass mirrors in Concentrating Solar Power (CSP) systems. Investors want solar reflectors that are as durable as glass and that meet increasing performance standards.

It's work that started 25 years ago with a 3M reflective coating known as ECP305+, Principal investigator Cheryl Kennedy was new to the Laboratory's CSP staff when she shared a patent on the reflective coating.

Today 3M is working with Kennedy again to develop a new version of the solar mirror film. The original solar mirror film was supposed to work reliably for 10 years, but in field tests it is still maintaining its reflectance after at least 15 years of outdoor exposure.

In a second related effort, 3M and NREL will develop a durable, cleanable hard-coat surface for the top layer of the metalized polymeric mirror films.

"At first people thought coatings to prevent CSP mirrors from getting dirty was too futuristic," Kennedy said. "Now the CSP market is taking off. They are looking for coatings that will help mirrors remain highly reflective for 30-50 years with minimal scratching and cleaning. That's how long a coal-fired power plant stays online generating electricity, so CSP systems need low-cost mirrors that maintain high specular reflectance for extended lifetimes outdoors in order to be competitive."

In a third related effort, 3M and NREL will test the new polymeric mirror films and compare the performance using a service lifetime model first developed with the original ECP-305+ reflector. NREL will characterize the new film's optical performance and durability by conducting tests in accelerated weathering chambers that use xenon arc lamps to simulate extreme and accelerated conditions of light, temperature and humidity at about seven times typical outdoor exposure.

Additionally, samples will be exposed in a new UV concentrator, which has the capability of concentrating natural sunlight 100 times in the UV portion of the solar spectrum. Samples will be exposed for the equivalent of 1 year of concentrated UV exposure with temperature and humidity control.

Ethanol-Biofuels

A new 3M prototype liquid-liquid separations technology uses a membrane to significantly increase the concentration of ethanol extracted from a fermentation broth. The new method does not rely on heat to evaporate water in the broth and reduces the distillation energy required to separate water and ethanol.

3M wants to test and scale-up the new technology for both the existing conventional corn-based ethanol industry and for the emerging lignocellulosic ethanol industry, which produces ethanol from the tougher parts of plants — like stalks, cobs and leaves — that are not part of the food supply.

Archer-Daniels Midland is the among the largest U.S. corn ethanol producers, and will test the 3M prototype in one of its pilot plants.

"The membrane technology has to be cheaper than the standard distillation method of recovering ethanol," said principal investigator Dan Schell. "We're trying to be more aware of separation as a unique step in the process and take advantage of it."

####

About National Renewable Energy Laboratory
NREL is the only federal laboratory dedicated to the research, development, commercialization and deployment of renewable energy and energy efficiency technologies. Backed by 32 years of achievement, NREL leads the way in helping meet the growing demand for clean energy.

For more information, please click here

Copyright © National Renewable Energy Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Jobs

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

SUNY Poly Announces Joint Development Agreement with INFICON to Establish Cutting Edge R&D Partnership Supporting New York State’s Rapidly Expanding Nanoelectronics Industry September 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Announcements

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Alliances/Trade associations/Partnerships/Distributorships

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic