Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > World record for shortest controllable time

Abstract:
Lasers can now generate light pulses down to 100 attoseconds (1 attosecond = 10-18s = one billionth of the billionth of a second) thereby enabling real-time measurements on ultrashort time scales that are inaccessible by any other methods. Scientist at the Max Born Institute for Nonlinear Optics and Short Time Spectroscopy (MBI) in Berlin, Germany have now demonstrated timing control with a residual uncertainty of 12 attoseconds.

World record for shortest controllable time

Germany | Posted on May 20th, 2010

This constitutes a new world record for the shortest controllable time scale. They reported about in Nature Photonics.

Light is an electromagnetic wave of very high frequency. In the visible domain, a single oscillation of the electric field only takes about 1200-2500 attoseconds. Consequently, an ultrashort laser pulse is comprised of a few of these oscillations. However, pulses from conventional short-pulse laser sources exhibit strong fluctuations of the positions of the field maximum relative to the pulse center. For maximum field strength, the center of the pulse has to coincide with a maximum of the electric field, as shown in Fig. 1 as a red curve. Consequently, methods have been developed to stabilize the position of the field maximum, i.e., the phase of the pulse.

Together with Vienna based laser manufacturer Femtolasers, MBI researchers in the group of Günter Steinmeyer have now developed a new method to control the phase of the pulse outside of the laser. In contrast to previous approaches, no manipulation inside the laser is necessary, which completely eliminates fluctuations of laser power and pulse duration and guarantees a strongly improved long-term stability. Correction of the pulse phase relies on a so-called acousto-optic frequency shifter, which is directly driven by the measured signal. Dr. Steinmeyer is convinced: "This direct correction of the phase dramatically simplifies many experiments in attosecond physics and frequency metrology."

Previously, stabilization of the position of the field maxima was only possible with a precision of about 100 attoseconds (10-16 s, corresponding to 1/20 of the wavelength), which is comparable to the shortest duration of attosecond pulses demonstrated so far. The new method allowed to push this limitation down to 12 attoseconds (1.2 x 10-17 s, 1/200 of the wavelength), which surpasses the atomic unit of time (24 attoseconds) by a factor of two. As the atomic unit of time marks the fastest possible time scale of processes in the outer shells of an atom, the new stabilization method will enable significant progress in the research on the fastest processes in nature.

This success strongly relied on a close collaboration with laser manufacturer Femtolasers who provided a specifically optimized laser for the joint experiment and is currently developing products based on this new method.

####

About Forschungsverbund Berlin e.V
The Forschungsverbund Berlin e.V (FVB) comprises eight research institutes in Berlin. The institutes are active in the fields of natural sciences, life sciences and environmental sciences. They pursue common interests within the framework of a single legal entity while preserving their scientific autonomy. As research institutes of national scientific importance, they are jointly funded by the German federal and state governments in accordance with Article 91b of the German Constitution. The institutes share an administrative infrastructure (Common Administration) and belong to the Leibniz Association (Leibniz-Gemeinschaft).

For more information, please click here

Contacts:
Dr. habil. Günter Steinmeyer
Tel +4930 63921440

Copyright © Forschungsverbund Berlin e.V

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Tools

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic