Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > AparnaBio Introduces InVivoPlexTM –TUMOR Nanoparticle RNAi Delivery System

Abstract:
First Tumor Targeted Reagent For in vivo Gene Function Research using RNAi or Gene Delivery

AparnaBio Introduces InVivoPlexTM –TUMOR Nanoparticle RNAi Delivery System

Rockville, MD | Posted on May 20th, 2010

Aparna Biosciences announced the introduction of InVivoPlexTM -TUMOR, the first tumor targeted nanoparticle reagent for in vivo translation of RNAi gene function research to mouse models of cancer. This innovative nanoparticle reagent system was presented at the 101st Annual Meeting of the American Association for Cancer Research (AACR), in Washington, DC, April 17-21, 2010.

The revolutionary capability of RNAi to selectively inhibit genes, recognized by a Nobel Prize, has led to explosive growth in understanding of tumor cell biology. To date RNAi based gene inhibition to identify potential new drug targets has largely involved in vitro experimentation. However, translation of this understanding into effective therapeutic strategies, validation of new targets for drug development, and highly selective therapeutics requires efficient in vivo delivery of RNAi agents in animal models. To address this need, AparnaBio has developed the InVivoPlexTM -TUMOR nanoparticle RNAi reagent. It targets RNAi activity in vivo to tumors via their leaky blood vessels and importantly minimizes RNAi activity at organs where effects can be toxic or obscure effects at the tumor.

InVivoPlexTM -TUMOR accelerates translation of research, an important stage in development of better treatments for cancer patients. InVivoPlexTM -TUMOR nanoparticle reagents are for research use only, but are based on AparnaBio's NanoElectroPlex TM clinically viable technology platform that is also being used to develop vaccines, therapeutics and imaging agents.

InVivoPlexTM -TUMOR development has been supported by funding from the National Institutes of Health and the State of Maryland, and funding for marketing and late stage product development by a Technology Growth Program grant from the Office of from Economic Development, Montgomery County, Maryland.

####

About AparnaBio
AparnaBio is a privately held, early stage biotech company located in Rockville, Maryland. The Company was founded in 2007 by Drs. Martin Woodle and Puthupparampil Scaria to develop advanced biomedical nanoparticles for in vivo research and tissue targeted therapeutics for treatment of cancer and other diseases. AparnaBio has established a proprietary technology platform, NanoElectroPlexTM, clinically viable nanoparticles for tissue targeted delivery for RNAi, gene therapy, and other agents with pharmacological properties that limit their therapeutic application. AparnaBio has attracted support from federal, state, and local governmental agents, including grants from NCI, NIAID, State of Maryland TEDCO and DBED, and Montgomery County.

AparnaBio’s InVivoPlexTM product family is based on the NanoElectroPlexTM proprietary technology platform for localization of nucleic acid agents at pathological tissues or specific cells associated with disease. AparnaBio is developing a portfolio of reagents for tissue targeted in vivo delivery. InVivoPlexTM –TUMOR, the first product released in this family, selectively delivers RNAi agents to vascularized tumors in mouse models of cancer. Development is ongoing to generate additional InVivoPlexTM products that provide ligand specific cell targeting. These reagents facilitate tissue selective target validation in animal models of disease, as well as RNAi drug discovery, and provide a foundation for development of tissue targeted RNAi nanoparticle therapeutics.

About RNAi
RNA interference (RNAi) is a revolutionary, robust and reproducible method to selectively inhibit genes, based on a natural mechanism for selective regulation of gene expression. RNAi reagents, short interfering RNA oligonucleotides (siRNA) and plasmid expressed hairpin RNA (shRNA and miRNA), have been adopted widely for research and have enabled a rapid growth in understanding of how genes are turned on and off in cells, and represent a new approach to drug discovery and development. RNAi offers the opportunity to discover critical biochemical pathways and regulatory factors underlying the pathology of disease, new targets for development of specific and highly selective medicines. Translation of RNAi from cell culture to in vivo animal models of cancer enables an essential step for advancing these discoveries to new therapeutics, and lays a foundation for therapeutic development of RNAi agents as a whole new class of highly specific therapeutics.

For more information, please click here

Contacts:
Mark Berninger, Vice President Business Development
12111 Parklawn Drive
Rockville, MD 20852-1707
1-301-770-2101

Copyright © AparnaBio

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Nanomedicine

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Events/Classes

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

Nanobiotechnology

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE