Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > AparnaBio Introduces InVivoPlexTM –TUMOR Nanoparticle RNAi Delivery System

Abstract:
First Tumor Targeted Reagent For in vivo Gene Function Research using RNAi or Gene Delivery

AparnaBio Introduces InVivoPlexTM –TUMOR Nanoparticle RNAi Delivery System

Rockville, MD | Posted on May 20th, 2010

Aparna Biosciences announced the introduction of InVivoPlexTM -TUMOR, the first tumor targeted nanoparticle reagent for in vivo translation of RNAi gene function research to mouse models of cancer. This innovative nanoparticle reagent system was presented at the 101st Annual Meeting of the American Association for Cancer Research (AACR), in Washington, DC, April 17-21, 2010.

The revolutionary capability of RNAi to selectively inhibit genes, recognized by a Nobel Prize, has led to explosive growth in understanding of tumor cell biology. To date RNAi based gene inhibition to identify potential new drug targets has largely involved in vitro experimentation. However, translation of this understanding into effective therapeutic strategies, validation of new targets for drug development, and highly selective therapeutics requires efficient in vivo delivery of RNAi agents in animal models. To address this need, AparnaBio has developed the InVivoPlexTM -TUMOR nanoparticle RNAi reagent. It targets RNAi activity in vivo to tumors via their leaky blood vessels and importantly minimizes RNAi activity at organs where effects can be toxic or obscure effects at the tumor.

InVivoPlexTM -TUMOR accelerates translation of research, an important stage in development of better treatments for cancer patients. InVivoPlexTM -TUMOR nanoparticle reagents are for research use only, but are based on AparnaBio's NanoElectroPlex TM clinically viable technology platform that is also being used to develop vaccines, therapeutics and imaging agents.

InVivoPlexTM -TUMOR development has been supported by funding from the National Institutes of Health and the State of Maryland, and funding for marketing and late stage product development by a Technology Growth Program grant from the Office of from Economic Development, Montgomery County, Maryland.

####

About AparnaBio
AparnaBio is a privately held, early stage biotech company located in Rockville, Maryland. The Company was founded in 2007 by Drs. Martin Woodle and Puthupparampil Scaria to develop advanced biomedical nanoparticles for in vivo research and tissue targeted therapeutics for treatment of cancer and other diseases. AparnaBio has established a proprietary technology platform, NanoElectroPlexTM, clinically viable nanoparticles for tissue targeted delivery for RNAi, gene therapy, and other agents with pharmacological properties that limit their therapeutic application. AparnaBio has attracted support from federal, state, and local governmental agents, including grants from NCI, NIAID, State of Maryland TEDCO and DBED, and Montgomery County.

AparnaBio’s InVivoPlexTM product family is based on the NanoElectroPlexTM proprietary technology platform for localization of nucleic acid agents at pathological tissues or specific cells associated with disease. AparnaBio is developing a portfolio of reagents for tissue targeted in vivo delivery. InVivoPlexTM –TUMOR, the first product released in this family, selectively delivers RNAi agents to vascularized tumors in mouse models of cancer. Development is ongoing to generate additional InVivoPlexTM products that provide ligand specific cell targeting. These reagents facilitate tissue selective target validation in animal models of disease, as well as RNAi drug discovery, and provide a foundation for development of tissue targeted RNAi nanoparticle therapeutics.

About RNAi
RNA interference (RNAi) is a revolutionary, robust and reproducible method to selectively inhibit genes, based on a natural mechanism for selective regulation of gene expression. RNAi reagents, short interfering RNA oligonucleotides (siRNA) and plasmid expressed hairpin RNA (shRNA and miRNA), have been adopted widely for research and have enabled a rapid growth in understanding of how genes are turned on and off in cells, and represent a new approach to drug discovery and development. RNAi offers the opportunity to discover critical biochemical pathways and regulatory factors underlying the pathology of disease, new targets for development of specific and highly selective medicines. Translation of RNAi from cell culture to in vivo animal models of cancer enables an essential step for advancing these discoveries to new therapeutics, and lays a foundation for therapeutic development of RNAi agents as a whole new class of highly specific therapeutics.

For more information, please click here

Contacts:
Mark Berninger, Vice President Business Development
12111 Parklawn Drive
Rockville, MD 20852-1707
1-301-770-2101

Copyright © AparnaBio

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Nanomedicine

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Events/Classes

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Oxford Instruments launches 3rd annual Indian nanotechnology seminars in Kolkata and Delhi - sharing expertise with Nanotechnology researchers in India September 25th, 2014

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Leti’s 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

Contributing to the spirit of the IYCR 2014 September 24th, 2014

Nanobiotechnology

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE