Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotubes that Heal: Engineering Better Orthopedic Implants

Fibroblasts growing on titanium alloy coated with nanotubes
Fibroblasts growing on titanium alloy coated with nanotubes

Abstract:
Titanium and its alloys have a leg up on all other materials used to make the orthopedic implants used by surgeons to repair damaged bones and joints. They are light, super-strong, and virtually inert inside the body. But whether the implants are destined for your knee, your hip, your spine or your jaw, the silvery metal has one big drawback.

By Marcia Goodrich

Nanotubes that Heal: Engineering Better Orthopedic Implants

Houghton, MI | Posted on May 19th, 2010

"Titanium has a mirror surface," says Tolou Shokufar, a PhD candidate in mechanical engineering-engineering mechanics. Cells don't adhere to it very well, so implants are often roughened up before they are placed in the body.

A good way to roughen titanium is to etch nanotubes into it, since they provide a superb surface for bone cells to grasp onto as part of the healing process. But etching nanotubes in the titanium alloy preferred by surgeons is not cheap. Conventional techniques require platinum, which costs over $1,700 an ounce.

Through her PhD work with Professor Craig Friedrich, director of the Multi-scale Technologies Institute, Shokufar has developed a less expensive way to etch nanotubes into the titanium alloy. In a weak solution of ammonium fluoride, she immerses two rods, one of the alloy, another of copper, and hooks them up to a power source. An electrical current flows into the copper, through the solution and out the titanium.

"It corrodes the titanium dioxide layer on the titanium in the form of a tube," Shokufar says, making nanotubes about seven microns long and a hundred nanometers in diameter. Growing the ideal tube takes about two hours.

Then she applies heat and pressure to the titanium alloy, annealing the nanotubes to give them a hydrophilic, crystalline structure. The surface not only attracts water, tests show it provides a friendly place for cells to grow. Shokufar has conducted experiments with fibroblasts—cells that make scar tissue—showing they grow faster on a layer of her titanium dioxide nanotubes than on the unaltered surface of the titanium alloy. Next, she aims to do a similar experiment with bone-growing osteoblasts.

Because the nanotubes are chemically identical to the titanium alloy, Shokufar expects that her innovation could be approved for medical use with relative ease. It may also have a wide variety of other applications, ranging from drug delivery to solar cells to hydrogen generation.

Her technique seems simple, but it didn't start out that way. "It took a lot of time to figure out," she says. "I'd spend days and days under the SEM, and when I went to sleep, I saw nanotubes inside my eyelids."

It's been worth it to see the perfect sheets of nanotubes grow under her care, however. "I really like them," she says. "They are like my babies."

####

About Michigan Technological University
Michigan Technological University (mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

For more information, please click here

Contacts:
Marcia Goodrich

906-487-2343

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Possible Futures

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project