Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotubes that Heal: Engineering Better Orthopedic Implants

Fibroblasts growing on titanium alloy coated with nanotubes
Fibroblasts growing on titanium alloy coated with nanotubes

Abstract:
Titanium and its alloys have a leg up on all other materials used to make the orthopedic implants used by surgeons to repair damaged bones and joints. They are light, super-strong, and virtually inert inside the body. But whether the implants are destined for your knee, your hip, your spine or your jaw, the silvery metal has one big drawback.

By Marcia Goodrich

Nanotubes that Heal: Engineering Better Orthopedic Implants

Houghton, MI | Posted on May 19th, 2010

"Titanium has a mirror surface," says Tolou Shokufar, a PhD candidate in mechanical engineering-engineering mechanics. Cells don't adhere to it very well, so implants are often roughened up before they are placed in the body.

A good way to roughen titanium is to etch nanotubes into it, since they provide a superb surface for bone cells to grasp onto as part of the healing process. But etching nanotubes in the titanium alloy preferred by surgeons is not cheap. Conventional techniques require platinum, which costs over $1,700 an ounce.

Through her PhD work with Professor Craig Friedrich, director of the Multi-scale Technologies Institute, Shokufar has developed a less expensive way to etch nanotubes into the titanium alloy. In a weak solution of ammonium fluoride, she immerses two rods, one of the alloy, another of copper, and hooks them up to a power source. An electrical current flows into the copper, through the solution and out the titanium.

"It corrodes the titanium dioxide layer on the titanium in the form of a tube," Shokufar says, making nanotubes about seven microns long and a hundred nanometers in diameter. Growing the ideal tube takes about two hours.

Then she applies heat and pressure to the titanium alloy, annealing the nanotubes to give them a hydrophilic, crystalline structure. The surface not only attracts water, tests show it provides a friendly place for cells to grow. Shokufar has conducted experiments with fibroblasts—cells that make scar tissue—showing they grow faster on a layer of her titanium dioxide nanotubes than on the unaltered surface of the titanium alloy. Next, she aims to do a similar experiment with bone-growing osteoblasts.

Because the nanotubes are chemically identical to the titanium alloy, Shokufar expects that her innovation could be approved for medical use with relative ease. It may also have a wide variety of other applications, ranging from drug delivery to solar cells to hydrogen generation.

Her technique seems simple, but it didn't start out that way. "It took a lot of time to figure out," she says. "I'd spend days and days under the SEM, and when I went to sleep, I saw nanotubes inside my eyelids."

It's been worth it to see the perfect sheets of nanotubes grow under her care, however. "I really like them," she says. "They are like my babies."

####

About Michigan Technological University
Michigan Technological University (mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

For more information, please click here

Contacts:
Marcia Goodrich

906-487-2343

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Possible Futures

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Nanomedicine

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project