Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Nanotech Discovery at Rensselaer Polytechnic Institute Could Lead to Breakthrough in Infrared Satellite Imaging Technology

Rensselaer Polytechnic Institute Professor Shan-Yu Lin has developed a new nanotechnology-based “microlens” that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices. The device, pictured, leverages the unique properties of nanoscale gold to “squeeze” light into the tiny holes in its surface.
Rensselaer Polytechnic Institute Professor Shan-Yu Lin has developed a new nanotechnology-based “microlens” that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices. The device, pictured, leverages the unique properties of nanoscale gold to “squeeze” light into the tiny holes in its surface.

Abstract:
Researchers Develop Lens-Less, Gold-Covered "Microlens" That Enhances Imaging Signal Without Increasing Noise

New Nanotech Discovery at Rensselaer Polytechnic Institute Could Lead to Breakthrough in Infrared Satellite Imaging Technology

Troy, NY | Posted on May 19th, 2010

Researchers from Rensselaer Polytechnic Institute have developed a new nanotechnology-based "microlens" that uses gold to boost the strength of infrared imaging and could lead to a new generation of ultra-powerful satellite cameras and night-vision devices.

By leveraging the unique properties of nanoscale gold to "squeeze" light into tiny holes in the surface of the device, the researchers have doubled the detectivity of a quantum dot-based infrared detector. With some refinements, the researchers expect this new technology should be able to enhance detectivity by up to 20 times.

This study is the first in more than a decade to demonstrate success in enhancing the signal of an infrared detector without also increasing the noise, said project leader Shawn-Yu Lin, professor of physics at Rensselaer and a member of the university's Future Chips Constellation and Smart Lighting Engineering Research Center.

"Infrared detection is a big priority right now, as more effective infrared satellite imaging technology holds the potential to benefit everything from homeland security to monitoring climate change and deforestation," said Lin, who in 2008 created the world's darkest material as well as a coating for solar panels that absorbs 99.9 percent of light from nearly all angles.

"We have shown that you can use nanoscopic gold to focus the light entering an infrared detector, which in turn enhances the absorption of photons and also enhances the capacity of the embedded quantum dots to convert those photons into electrons. This kind of behavior has never been seen before," he said.

Results of the study, titled "A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots," were published online recently by the journal Nano Letters. The paper also will appear in a forthcoming issue of the journal's print edition. The U.S. Air Force Office of Scientific Research funded this study.

The paper is available online at: pubs.acs.org/doi/abs/10.1021/nl100081j

The detectivity of an infrared photodetector is determined by how much signal it receives, divided by the noise it receives. The current state-of-the art in photodetectors is based on mercury-cadmium-telluride (MCT) technology, which has a strong signal but faces several challenges including long exposure times for low-signal imaging. Lin said his new study creates a roadmap for developing quantum dot infrared photodetectors (QDIP) that can outperform MCTs, and bridge the innovation gap that has stunted the progress of infrared technology over the past decade.

The surface plasmon QDIPs are long, flat structures with countless tiny holes on the surface. The solid surface of the structure that Lin built is covered with about 50 nanometers - or 50 billionths of a meter - of gold. Each hole is about 1.6 microns - or 1.6 millionths of a meter - in diameter, and 1 micron deep. The holes are filled with quantum dots, which are nanoscale crystals with unique optical and semiconductor properties.

The interesting properties of the QDIP's gold surface help to focus incoming light directly into the microscale holes and effectively concentrate that light in the pool of quantum dots. This concentration strengthens the interaction between the trapped light and the quantum dots, and in turn strengthens the dots' ability to convert those photons into electrons. The end result is that Lin's device creates an electric field up to 400 percent stronger than the raw energy that enters the QDIP.

The effect is similar to what would result from covering each tiny hole on the QDIP with a lens, but without the extra weight, and minus the hassle and cost of installing and calibrating millions of microscopic lenses, Lin said.

Lin's team also demonstrated in the journal paper that the nanoscale layer of gold on the QDIP does not add any noise or negatively impact the device's response time. Lin plans to continue honing this new technology and use gold to boost the QDIP's detectivity, by both widening the diameter of the surface holes and more effective placement of the quantum dots.

"I think that, within a few years, we will be able to create a gold-based QDIP device with a 20-fold enhancement in signal from what we have today," Lin said. "It's a very reasonable goal, and could open up a whole new range of applications from better night-vision goggles for soldiers to more accurate medical imaging devices."

Co-authors of the paper are Rensselaer Senior Research Scientist James Bur, graduate student Chun-Chieh Chang, and Research Associate Yong-Sung Kim; Yagya D. Sharma, Rajeev V. Shenoi, and Sanjay Krishna of the Center for High Technology Materials at the University of New Mexico, Albuquerque; and Danhong Huang of the Space Vehicles Directorate at the Air Force Research Laboratory, Kirtland Air Force Base.

For more information on Lin's research, visit:

www.rpi.edu/dept/phys/faculty/profiles/lin.html
www.rpi.edu/~sylin/

For information on Lin's "darkest material" and solar panel coating visit:

news.rpi.edu/update.do?artcenterkey=2393
www.washingtonpost.com/wp-dyn/content/article/2008/02/19/AR2008021902617.html
news.rpi.edu/update.do?artcenterkey=2507
www.cnn.com/2008/TECH/science/11/06/solar.coating/index.html

####

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spider electro-combs its sticky nano-filaments January 28th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

Spider electro-combs its sticky nano-filaments January 28th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Homeland Security

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Laser sniffs out toxic gases from afar: System can ID chemicals in the atmosphere from a kilometer away December 4th, 2014

Better bomb-sniffing technology: University of Utah engineers develop material for better detectors November 4th, 2014

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Aerospace/Space

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Production of Special Nanocomposite in Iran with Application in Railways December 23rd, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Quantum Dots/Rods

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Shining a light on quantum dots measurement January 15th, 2015

Carbon Nanotubes Increase Efficiency of Solar Cells January 12th, 2015

Philips and AOC Monitors with QD Vision’s Color IQ™ Deliver World’s Best Color: Leading brands embrace Quantum Dot technology to enable 99% Adobe RGB color in 27-inch monitors January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE