Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCLA gets $5.5 million from Defense agency to create new rotating microscale motors

5-millimeter silicon rotary stage fabricated by UCLA engineers
5-millimeter silicon rotary stage fabricated by UCLA engineers

Abstract:
If you've ever used an iPhone, a Wii video game or an automobile airbag, you've benefited from micro-electro-mechanical systems (MEMS) technology, in which arrays of tiny devices mounted on computer chips — many no larger than the width of a human hair — are able to sense and respond to changes in heat, light, motion, sound or other external stimuli.

By Wileen Wong Kromhout

UCLA gets $5.5 million from Defense agency to create new rotating microscale motors

Los Angeles, CA | Posted on May 18th, 2010

Now, the UCLA Henry Samueli School of Engineering and Applied Science has been awarded $5.5 million from the U.S. Defense Department's central research and development agency to advance MEMS technology for use in defense systems.

The four-and-a-half-year grant from the Defense Advanced Research Project Agency (DARPA) will fund research by UCLA engineers to create electrically connected, rotating microscale motors for sensing and communications as part of the agency's Information Tethered Micro Automated Rotary Stages program.

The micromachining techniques used to fabricate microdevices have been highly successful in producing miniature systems and components — including sensors, actuators and electronics — that combine high performance with low weight and power consumption. And early MEMS work demonstrated multiple avenues for realizing micromotors that are able to rotate 360 degrees.

But even with the progress of MEMS technology, the use of rotating microdevices has not been as widespread as might be expected, according to DARPA, primarily because most applications have used structures fabricated into rotary stages without the availability of active electrical power, limiting the utility of the stages.

"Providing electric connections can be a little tricky, especially on continuous rotating platforms," said Chang-Jin "CJ" Kim, a professor of mechanical and aerospace engineering at UCLA Engineering and principal investigator on the DARPA project. "You rarely see physically free objects electrically connected. You can't have electrical wires protruding from an object that rotates endlessly. So that's one of the challenges we are facing."

Providing electrical power on a stage while allowing full rotation and precise position control of these components would lead to microsystems with much higher performance and functionality.

The goal of the UCLA Engineering team is to demonstrate a MEMS-fabricated rotary stage that would enable free rotation coupled with electrical power and signal transfer. This would launch the implementation of sensing and device operations on a microstage with position-measuring accuracies that would most likely be better than those obtained by large, instrumented optical rotary stages.

Thus far, Kim's group has successfully created a rotary stage using liquid droplets as the mechanical element that serves as a bridge between two moving objects. The liquid droplets, formed into a series of rings, provide physical support as well as rotational lubrication to the stage and allow for multiple stable electrical connections.

"On the microscale, smaller than a millimeter, the surface tension of liquid droplets, in terms of strength, is stronger than the weight of the droplet," said Kim, who specializes in MEMS. "That's why a smaller water droplet beads more and spreads less than a larger droplet. It stays in the form of a sphere. The smaller it gets, the greater the effect of surface tension gets. With liquid bearings formed by free droplets, only because they are very small, there is no solid-to-solid contact and there is no wear."

Kim's rings are made of liquid metals or ionic liquid, which not only allows for higher power but also leads to more stable electrical contact.

The team's next step will be to use electric signals to rotate the stage. Thus far, the capability to precisely rotate micromachined structures in a controllable manner has not been achieved.

"The rotary stage will be electro-statically activated by high-voltages applied across electrodes placed beneath the stage, and the high voltages will be applied by a high-voltage driver circuit," said Ken Yang, a professor of electrical engineering at UCLA Engineering and a co-principal investigator responsible for the development of the electronic interface that controls the rotary stage.

"The position of the stage will roughly be determined by activating a proper set of electrodes," Yang said. "The capacitance between electrodes will be a measure of the precise position. The control electronics will determine the appropriate sequence of binary voltages driven to each electrode. This will determine how the stage moves, in what direction, and how fast. We intend for the controller to be fully incorporated on an integrated circuit, also located beneath the rotor."

Once the team shows proof of concept, they will concentrate on making the motorized rotary stage smaller, more accurate and more efficient.

Other members of the UCLA team include Eric Chiou, an assistant professor of mechanical and aerospace engineering; Sungtaek Ju, an associate professor of mechanical and aerospace engineering; Jason Woo, a professor of electrical engineering; and Chris Gudeman of Innovative Micro Technology (IMT), a company specializing in micromachines.

####

About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

MEMS

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

MEMS Industry Group Hosts Its First MEMS/Sensors Conference Session at Transducers 2015: MIG Speakers Will Explore Technology Transfer, Emerging MEMS/Sensors, Manufacturing Infrastructure and Process Technology, June 23 in Anchorage June 3rd, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Sensors

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Military

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project