Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA gets $5.5 million from Defense agency to create new rotating microscale motors

5-millimeter silicon rotary stage fabricated by UCLA engineers
5-millimeter silicon rotary stage fabricated by UCLA engineers

Abstract:
If you've ever used an iPhone, a Wii video game or an automobile airbag, you've benefited from micro-electro-mechanical systems (MEMS) technology, in which arrays of tiny devices mounted on computer chips — many no larger than the width of a human hair — are able to sense and respond to changes in heat, light, motion, sound or other external stimuli.

By Wileen Wong Kromhout

UCLA gets $5.5 million from Defense agency to create new rotating microscale motors

Los Angeles, CA | Posted on May 18th, 2010

Now, the UCLA Henry Samueli School of Engineering and Applied Science has been awarded $5.5 million from the U.S. Defense Department's central research and development agency to advance MEMS technology for use in defense systems.

The four-and-a-half-year grant from the Defense Advanced Research Project Agency (DARPA) will fund research by UCLA engineers to create electrically connected, rotating microscale motors for sensing and communications as part of the agency's Information Tethered Micro Automated Rotary Stages program.

The micromachining techniques used to fabricate microdevices have been highly successful in producing miniature systems and components — including sensors, actuators and electronics — that combine high performance with low weight and power consumption. And early MEMS work demonstrated multiple avenues for realizing micromotors that are able to rotate 360 degrees.

But even with the progress of MEMS technology, the use of rotating microdevices has not been as widespread as might be expected, according to DARPA, primarily because most applications have used structures fabricated into rotary stages without the availability of active electrical power, limiting the utility of the stages.

"Providing electric connections can be a little tricky, especially on continuous rotating platforms," said Chang-Jin "CJ" Kim, a professor of mechanical and aerospace engineering at UCLA Engineering and principal investigator on the DARPA project. "You rarely see physically free objects electrically connected. You can't have electrical wires protruding from an object that rotates endlessly. So that's one of the challenges we are facing."

Providing electrical power on a stage while allowing full rotation and precise position control of these components would lead to microsystems with much higher performance and functionality.

The goal of the UCLA Engineering team is to demonstrate a MEMS-fabricated rotary stage that would enable free rotation coupled with electrical power and signal transfer. This would launch the implementation of sensing and device operations on a microstage with position-measuring accuracies that would most likely be better than those obtained by large, instrumented optical rotary stages.

Thus far, Kim's group has successfully created a rotary stage using liquid droplets as the mechanical element that serves as a bridge between two moving objects. The liquid droplets, formed into a series of rings, provide physical support as well as rotational lubrication to the stage and allow for multiple stable electrical connections.

"On the microscale, smaller than a millimeter, the surface tension of liquid droplets, in terms of strength, is stronger than the weight of the droplet," said Kim, who specializes in MEMS. "That's why a smaller water droplet beads more and spreads less than a larger droplet. It stays in the form of a sphere. The smaller it gets, the greater the effect of surface tension gets. With liquid bearings formed by free droplets, only because they are very small, there is no solid-to-solid contact and there is no wear."

Kim's rings are made of liquid metals or ionic liquid, which not only allows for higher power but also leads to more stable electrical contact.

The team's next step will be to use electric signals to rotate the stage. Thus far, the capability to precisely rotate micromachined structures in a controllable manner has not been achieved.

"The rotary stage will be electro-statically activated by high-voltages applied across electrodes placed beneath the stage, and the high voltages will be applied by a high-voltage driver circuit," said Ken Yang, a professor of electrical engineering at UCLA Engineering and a co-principal investigator responsible for the development of the electronic interface that controls the rotary stage.

"The position of the stage will roughly be determined by activating a proper set of electrodes," Yang said. "The capacitance between electrodes will be a measure of the precise position. The control electronics will determine the appropriate sequence of binary voltages driven to each electrode. This will determine how the stage moves, in what direction, and how fast. We intend for the controller to be fully incorporated on an integrated circuit, also located beneath the rotor."

Once the team shows proof of concept, they will concentrate on making the motorized rotary stage smaller, more accurate and more efficient.

Other members of the UCLA team include Eric Chiou, an assistant professor of mechanical and aerospace engineering; Sungtaek Ju, an associate professor of mechanical and aerospace engineering; Jason Woo, a professor of electrical engineering; and Chris Gudeman of Innovative Micro Technology (IMT), a company specializing in micromachines.

####

About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project