Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Shrink Solar's Quantum Dot Technology Achieves 12.6% Optical Efficiency in Published Study

Abstract:
Shrink Nanotechnologies, Inc. ("Shrink") (OTCBB:INKN), an innovative nanotechnology company developing products and licensing opportunities in the solar energy production, medical diagnostics and sensors and biotechnology research and development tools businesses, is pleased to announced today that its wholly-owned subsidiary Shrink Solar's patent-pending Quantum Dot Solar Concentrator technology has demonstrated the ability to boost solar power absorption by silicon cells by nearly twice that of other leading photovoltaic materials.

Shrink Solar's Quantum Dot Technology Achieves 12.6% Optical Efficiency in Published Study

Carlsbad, CA | Posted on May 17th, 2010

Results of the study were published in Applied Physics Letters (Vol.96, Issue 19) online on May 11, 2010. The article titled, "Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators," is available at www.shrinksolar.com.

Shrink has the exclusive rights to develop and commercialize products based on its patent-pending Quantum Dot Solar Concentrator technology, which acts as a "solar cell accessory" by enhancing the ability of traditional silicon solar cells to absorb sunlight and convert it to electricity. The technology was invented by Shrink Science Advisory Board member Dr. Sayantani Ghosh and Shrink Scientific Co-founder Dr. Michelle Khine. In this latest study, Dr. Ghosh and her team determined that "the performance of chemically synthesized lead sulfide (Pbs) quantum dots (QDs) generated nearly twice the photocurrent in silicon cells than other materials, achieving an integrated optical efficiency of 12.6%. This attributed primarily to the broadband absorption of PbS, which allows optimum harvesting of the solar spectrum."

"This published study confirms the findings of previous work conducted by some of the nation's leading PV laboratories doing work on QDs. Our QD polymer-based solutions have the ability to extend the relative performance of existing PV technology and have the adaptability to be integrated into legacy PV technologies. This study provides another important proof-of-concept toward the commercialization and application of our solar energy technology for a wide range of solar powered products," said Mark L. Baum, CEO of Shrink Nanotechnologies, Inc.

Statements contained herein that are not historical facts may be forward-looking statements within the meaning of the Securities Act of 1933, as amended. Forward-looking statements include statements regarding the intent, belief or current expectations of the Company and its management. Such statements are estimates only. Actual results may differ materially from those anticipated in this press release. Such statements reflect management's current views, are based on certain assumptions and involve risks and uncertainties. Actual results, events, or performance may differ materially from the above forward-looking statements due to a number of important factors, and will be dependent upon a variety of factors, including, but not limited to Shrink's ability to obtain additional financing, secure defendable patent rights, to build and develop markets for Shrink's technologies and products and to finalize a commercial-ready solar concentrator product. These factors should be strongly considered when making a decision to acquire or maintain a financial interest in Shrink, including consulting with a FINRA registered representative prior to making such decision. Shrink undertakes no obligation to publicly update these forward-looking statements to reflect events or circumstances that occur after the date hereof or to reflect any change in Shrink's expectations with regard to these forward-looking statements or the occurrence of unanticipated events. Factors that may impact Shrink's success are more fully disclosed in Shrink's most recent public filings with the U.S. Securities and Exchange Commission.

####

About Shrink Nanotechnologies
Shrink Nanotechnologies, Inc. is a high-technology developing-stage company that makes ultra-functional nano-sized technologies, components and product systems. The Company operates as a first of its kind FIGA(TM) organization. FIGA companies bring together diverse contributions from leaders in the worlds of finance, industry, government and academia. The Company's diverse advanced plastic substrates, nano-devices and biotech research tools, among others, are designed to be ultra-functional and mechanically superior in the solar energy, environmental detection, stem cell research tools and biotechnology device markets. The Company's products are based on a pre-stressed plastic called NanoShrink(TM), and on a patent-pending manufacturing process called the ShrinkChip Manufacturing Solution(TM). Shrink's unique materials and manufacturing solution represents a new paradigm in the rapid design, low-cost fabrication and manufacture of nano-scale devices for numerous significant markets.

To learn more about Shrink Nanotechnologies, Inc. or to download the most up-to-date shareholder kit, please visit at www.shrinknano.com and www.shrinksolar.com.

For more information, please click here

Contacts:
Mark L. Baum, Esq.
760-804-8844 x205

Copyright © Shrink Nanotechnologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Patents/IP/Tech Transfer/Licensing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Smarter window materials can control light and energy July 22nd, 2015

Magnetic nanoparticles could be key to effective immunotherapy: New method moves promising strategy closer to clinical use July 15th, 2015

Energy

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Quantum Dots/Rods

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Engineered hybrid crystal opens new frontiers for high-efficiency lighting: University of Toronto researchers successfully combine 2 different materials to create new hyper-efficient light-emitting crystal July 16th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Solar/Photovoltaic

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project