Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Graphene-DNA biosensor selective, simple to create

An illustration of how fluorescent-tagged DNA interacts with functionalized graphene. Both single-stranded DNA (A) and double-stranded DNA (B) are adsorbed onto a graphene surface, but the interaction is stronger with ssDNA, causing the fluorescence on the ssDNA to darken more. C) A complimentary DNA nears the ssDNA and causes the adsorbed ssDNA to detach from the graphene surface. D) DNA adsorbed onto graphene is protected from being broken down
An illustration of how fluorescent-tagged DNA interacts with functionalized graphene. Both single-stranded DNA (A) and double-stranded DNA (B) are adsorbed onto a graphene surface, but the interaction is stronger with ssDNA, causing the fluorescence on the ssDNA to darken more. C) A complimentary DNA nears the ssDNA and causes the adsorbed ssDNA to detach from the graphene surface. D) DNA adsorbed onto graphene is protected from being broken down

Abstract:
Nanostructure could help diagnose disease, facilitate gene therapy, more

Graphene-DNA biosensor selective, simple to create

Richland, WA | Posted on May 15th, 2010

Graphene and DNA can combine to create a stable and accurate biosensor, reports a study published in the nanotechnology journal Small. The tiny biosensor might eventually help doctors and researchers better understand and diagnose disease.

Scientists at the Department of Energy's Pacific Northwest National Laboratory and Princeton University showed that single-stranded DNA strongly interacts with graphene, a nanomaterial made of sheets of carbon atoms just a single atom thick. They also found that graphene protects DNA from being broken down by enzymes similar to those found in body fluids - a characteristic that should make graphene-DNA biosensors highly durable.

"Graphene is of great interest because it has several unique characteristics, including being easy and relatively inexpensive to make," said PNNL chemist Yuehe Lin, the paper's corresponding author. "But very few had systematically explored how graphene interacted with DNA using multiple spectroscopic techniques until we took a look. We found they make quite the pair."

Scientists have been exploring the potential of nanotechnology - or tiny materials that are just one billionth of a meter in size - for several decades. A growing number of scientists are focusing on graphene because it is superconductive, is exceptionally strong and has a large surface area. It's also easier to make and use than other nanomaterials, such as carbon nanotubes. Nanotechnology could help create new drugs, deliver medicine and develop disease-detecting biosensors.

A graphene-DNA biosensor would detect diseases by fishing for molecules involved in disease. Like stringing a worm on a hook, scientists would place DNA from a gene that's known to contribute to a disease's development onto a piece of graphene. The researchers would then dip the biosensor hook into treated blood, saliva or another bodily fluid. If DNA from the disease-causing gene is in the fluid and takes the bait, the biosensor gives off a signal that scientists can detect.

The double-stranded nature of the DNA in our genes makes this fishing scheme possible. Normal double-stranded DNA looks like a twisted ladder. But single-stranded DNA looks like a comb: it's made up of a sequence of DNA letters, or bases, that stick up from the backbone and that look for another base to pair up with. When complementary sequences on single-stranded DNA meet, the bases form the rungs of the twisted ladder.

To design DNA-graphene biosensors, scientists need to understand how DNA and graphene interact. Lin and colleagues, including lead author and then-PNNL post-doctoral researcher Zhiwen Tang, attached a fluorescent molecule to DNA that glows when DNA floats freely to follow the DNA in test tubes. Next, they mixed the glowing DNA and graphene. Single-stranded DNA dimmed when it came in contact with graphene. But the brightness of double-stranded DNA decreased only slightly under the same conditions. Further analysis with several spectroscopy tests showed that graphene's interaction with single-stranded DNA is much stronger than with its double-stranded cousin. The tests also suggested that graphene altered single-stranded DNA's structure.

To find out if single-stranded DNA could be coaxed off the graphene by making it double-stranded, the researchers added plain, single-stranded DNA that had a complementary sequence of DNA bases. The original single-stranded DNA shined anew. This indicated the original single strand of DNA had combined with the added DNA strand and formed a new molecule that detached from graphene's surface.

The scientists then tested how picky the single-stranded DNA on the graphene was about partners. They placed the graphene-DNA biosensors into two different test tubes. In one, they added a complementary DNA strand with bases that were a perfect match to the DNA already attached to the graphene. In the other, they placed a complementary DNA strand that had one base that didn't pair up with the original DNA strand on the graphene surface.

Both gave off more light after the complementary DNA was introduced. But light from the tube with the perfectly matched DNA strands was two times brighter than from the tube with the slightly mismatched DNA strands. The ability to identify whether a target DNA strand has been found within one base match - called high specificity - should make graphene-DNA biosensors more accurate than other, conventional linear DNA biosensors, the scientists wrote.

Graphene also helps make DNA durable, the scientists learned. They placed two kinds of single-stranded DNA - one that was attached to graphene, and another that was free floating - in test tubes. They added DNAse - an enzyme that chews up DNA - to both and found that the free DNA strands were broken down, while the graphene-DNA nanostructures remained intact for at least 60 minutes. The scientists suggested this protection could make DNA-graphene platforms that are well suited for imaging and gene delivery in patients.

"The simple design and tremendous durability of graphene-DNA biosensors make diagnosing life-threatening diseases with them a possibility," Lin said. "Now my colleagues and I will look to see if graphene's ability to protect DNA against enzymes could help DNA-graphene structures deliver drugs to diseased cells or even help with in gene therapy."

Princeton University provided the graphene and PNNL's Transformational Materials Science Initiative paid for this study. Some of the research was conducted at EMSL, the Environmental Molecular Sciences Laboratory, a national scientific user facility located at PNNL.

REFERENCE: Zhiwen Tang, Hong Wu, John R. Cort, Garry W. Buchko, Youyu Zhang, Yuyan Shao, Ilhan A. Aksay, Jun Liu, Yuehe Lin. "The Constraint of DNA on Functionalized Graphene Improves Its Biostability and Specificity" Small. Published online May 11, 2010. www3.interscience.wiley.com/cgi-bin/fulltext/123430457/PDFSTART. To be published in the June 7, 2010 print edition.

####

About Pacific Northwest National Laboratory
Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,700 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program that is located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.

For more information, please click here

Contacts:
Frances White
PNNL
(509) 375-6904

Copyright © Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanotubes/Buckyballs

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Sensors

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Announcements

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Nanobiotechnology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE