Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Prof researching better solar panels

(Flickr / CC BY 2.0)
(Flickr / CC BY 2.0)

Abstract:
Nanotechnology could make solar energy a cheap, sustainable option

By Lance Mudryk

Prof researching better solar panels

Alberta, Canada | Posted on May 15th, 2010

With his $20,000 research grant, Karthik Shankar intends to develop a more efficient, cheaper solar panel using nanotechnology.

The University of Alberta engineering professor's research is largely based on the increased functionality of solar cells. By implementing nanotechnology into semiconductors ó materials used to convert sunlight into electricity ó his solar panels will be able to harvest light more intensely and access a wider spectrum of the light given off by the sun.

"A solar cell works by harvesting light and converting it into electricity," Shankar explained. "(We're) using metal nanoparticles which have these so-called plasmonic properties."

According to Shankar, these plasmonic properties make the electromagnetic field of a structure much stronger. This will help the solar cells convert more electricity out of the light they're exposed to.

"When we simulated them, we saw that these nanoparticles have a certain resonance, and at that resonance they really amplify the electromagnetic fields around those particles," he said.

Shankar believes that his proposal could possibly help solar technology take off, largely due to its economic feasibility. By using organic materials, metals, and a semiconductor known as titanium dioxide, costs could be dramatically lowered.

"(What we're proposing is) potentially a lot cheaper than what's out there," he said. "One of the problems that's preventing the eruption of solar technology is that the solar cells, which are made from American silicon, are very expensive. And so they're still not a viable competitor to fossil fuels."

Even though Shankar has been developing this proposal for a year now, he still believes that his idea could take five to 10 years before it will be commercially viable.

"The first objective is to translate these ideas, perform experiments, and actually realize the idea. Later on, if the idea is successful, we'll probably try to commercialize it in a spin-off company or license the intellectual property to a bigger company if they're interested."

####

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Academic/Education

LuleŚ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project