Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Prof researching better solar panels

(Flickr / CC BY 2.0)
(Flickr / CC BY 2.0)

Abstract:
Nanotechnology could make solar energy a cheap, sustainable option

By Lance Mudryk

Prof researching better solar panels

Alberta, Canada | Posted on May 15th, 2010

With his $20,000 research grant, Karthik Shankar intends to develop a more efficient, cheaper solar panel using nanotechnology.

The University of Alberta engineering professor's research is largely based on the increased functionality of solar cells. By implementing nanotechnology into semiconductors materials used to convert sunlight into electricity his solar panels will be able to harvest light more intensely and access a wider spectrum of the light given off by the sun.

"A solar cell works by harvesting light and converting it into electricity," Shankar explained. "(We're) using metal nanoparticles which have these so-called plasmonic properties."

According to Shankar, these plasmonic properties make the electromagnetic field of a structure much stronger. This will help the solar cells convert more electricity out of the light they're exposed to.

"When we simulated them, we saw that these nanoparticles have a certain resonance, and at that resonance they really amplify the electromagnetic fields around those particles," he said.

Shankar believes that his proposal could possibly help solar technology take off, largely due to its economic feasibility. By using organic materials, metals, and a semiconductor known as titanium dioxide, costs could be dramatically lowered.

"(What we're proposing is) potentially a lot cheaper than what's out there," he said. "One of the problems that's preventing the eruption of solar technology is that the solar cells, which are made from American silicon, are very expensive. And so they're still not a viable competitor to fossil fuels."

Even though Shankar has been developing this proposal for a year now, he still believes that his idea could take five to 10 years before it will be commercially viable.

"The first objective is to translate these ideas, perform experiments, and actually realize the idea. Later on, if the idea is successful, we'll probably try to commercialize it in a spin-off company or license the intellectual property to a bigger company if they're interested."

####

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project