Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UGA researchers use patented SERS technique to rapidly, accurately detect rotavirus strains

Abstract:
Using nanotechnology and a patented signal enhancing technique developed at the University of Georgia, UGA researchers have discovered a rapid, sensitive and cost-effective method to detect and identify a number of rotavirus strains and genotypes in less than one minute with greater than 96 percent accuracy.

By Kat Gilmore

UGA researchers use patented SERS technique to rapidly, accurately detect rotavirus strains

Athens, GA | Posted on May 15th, 2010

In their study, Ralph A. Tripp and Jeremy D. Driskell, researchers in the College of Veterinary Medicine's department of infectious diseases, and Yiping Zhao and Richard Dluhy, researchers in the Franklin College of Arts and Sciences departments of physics and chemistry, utilized surface enhanced Raman scattering, or SERS, to detect and quantify Group A rotaviruses.


Group A rotaviruses are the leading cause of severe gastroenteritis in infants and young children, infecting approximately 130 million children annually.Rotavirus infections are responsible for approximately 2 million hospitalizations and more than 500,000 deaths each year, and are particularly burdensome on health care resources in developing countries. Clinical diagnostic tests currently used to detect rotavirus do not provide information on the genotypes, which is essential for aiding public health officials in monitoring epidemics, identifying novel strains and controlling disease.


Tripp and Driskell worked with the most commonly identified strains of rotavirus, provided by Carl D. Kirkwood of the Murdoch Childrens Research Institute, at the Royal Children's Hospital in Parkville, Australia, to show that SERS can detect and identify numerous virus strains and genotypes in less than 30 seconds, without the need to amplify the analyte for detection.Their technique requires no or minimal specimen preparation for analysis and uses minimal volumes of analyte.


"Nanotechnology has provided a considerable advance in diagnostic and prognostic capabilities," noted Tripp."The technology strengthens and expands current diagnostic applications by providing a means to enhance existing technology for novel applications such as SERS detection of viruses.The field of diagnostics and biosensing has been pushed dramatically forward by our ability to now amplify and detect the molecular fingerprints of pathogens as opposed to amplifying the pathogens for detection."


The findings from the UGA research team are important as most enteric viruses produce diseases that are not readily distinct from other pathogens and diagnostics are generally limited to attempts at viral culture, antibody-mediated antigen detection and polymerase chain reaction. These methods are cumbersome, often have limited breadth and sensitivity in detection and/or offer limited information on genotype.


SERS works by measuring the change in frequency of a near-infrared laser as it scatters off viral nucleic acid and protein components. This change in frequency, named the Raman shift for the scientist who discovered it in 1928, is as distinct as a fingerprint.


Funding for the study was provided by the U.S. Army Research Laboratory and the Georgia Research Alliance.The study was published in PLoS ONE on April 19.

####

About University of Georgia, College of Veterinary Medicine
The UGA College of Veterinary Medicine, founded in 1946, is dedicated to training future veterinarians, to conducting research related to animal diseases, and to providing veterinary services for animals and their owners.Research efforts are aimed at enhancing the quality of life for animals and people, improving the productivity of poultry and livestock, and preserving a healthy interface between wildlife and people in the environment they share.The college enrolls 102 students each fall out of more than 550 who apply.For more information, see www.vet.uga.edu.


The current UGA College of Veterinary Medicine Teaching Hospital, built in 1979, serves more than 18,000 patients per year in one of the smallest teaching hospitals in the United States.The college is currently working to raise $15 million toward building a new Veterinary Medical Learning Center, which will include a new teaching hospital as well as classrooms and laboratories that will allow for the education of more veterinarians.The goal is to increase enrollment to 150 when the Veterinary Medical Learning Center is built.Fore more information, see www.vet.uga.edu/giving/campaign.php.

For more information, please click here

Contacts:
Kat Gilmore
706/543-5485

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Possible Futures

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Discoveries

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Tools

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project