Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UGA researchers use patented SERS technique to rapidly, accurately detect rotavirus strains

Abstract:
Using nanotechnology and a patented signal enhancing technique developed at the University of Georgia, UGA researchers have discovered a rapid, sensitive and cost-effective method to detect and identify a number of rotavirus strains and genotypes in less than one minute with greater than 96 percent accuracy.

By Kat Gilmore

UGA researchers use patented SERS technique to rapidly, accurately detect rotavirus strains

Athens, GA | Posted on May 15th, 2010

In their study, Ralph A. Tripp and Jeremy D. Driskell, researchers in the College of Veterinary Medicine's department of infectious diseases, and Yiping Zhao and Richard Dluhy, researchers in the Franklin College of Arts and Sciences departments of physics and chemistry, utilized surface enhanced Raman scattering, or SERS, to detect and quantify Group A rotaviruses.


Group A rotaviruses are the leading cause of severe gastroenteritis in infants and young children, infecting approximately 130 million children annually.Rotavirus infections are responsible for approximately 2 million hospitalizations and more than 500,000 deaths each year, and are particularly burdensome on health care resources in developing countries. Clinical diagnostic tests currently used to detect rotavirus do not provide information on the genotypes, which is essential for aiding public health officials in monitoring epidemics, identifying novel strains and controlling disease.


Tripp and Driskell worked with the most commonly identified strains of rotavirus, provided by Carl D. Kirkwood of the Murdoch Childrens Research Institute, at the Royal Children's Hospital in Parkville, Australia, to show that SERS can detect and identify numerous virus strains and genotypes in less than 30 seconds, without the need to amplify the analyte for detection.Their technique requires no or minimal specimen preparation for analysis and uses minimal volumes of analyte.


"Nanotechnology has provided a considerable advance in diagnostic and prognostic capabilities," noted Tripp."The technology strengthens and expands current diagnostic applications by providing a means to enhance existing technology for novel applications such as SERS detection of viruses.The field of diagnostics and biosensing has been pushed dramatically forward by our ability to now amplify and detect the molecular fingerprints of pathogens as opposed to amplifying the pathogens for detection."


The findings from the UGA research team are important as most enteric viruses produce diseases that are not readily distinct from other pathogens and diagnostics are generally limited to attempts at viral culture, antibody-mediated antigen detection and polymerase chain reaction. These methods are cumbersome, often have limited breadth and sensitivity in detection and/or offer limited information on genotype.


SERS works by measuring the change in frequency of a near-infrared laser as it scatters off viral nucleic acid and protein components. This change in frequency, named the Raman shift for the scientist who discovered it in 1928, is as distinct as a fingerprint.


Funding for the study was provided by the U.S. Army Research Laboratory and the Georgia Research Alliance.The study was published in PLoS ONE on April 19.

####

About University of Georgia, College of Veterinary Medicine
The UGA College of Veterinary Medicine, founded in 1946, is dedicated to training future veterinarians, to conducting research related to animal diseases, and to providing veterinary services for animals and their owners.Research efforts are aimed at enhancing the quality of life for animals and people, improving the productivity of poultry and livestock, and preserving a healthy interface between wildlife and people in the environment they share.The college enrolls 102 students each fall out of more than 550 who apply.For more information, see www.vet.uga.edu.


The current UGA College of Veterinary Medicine Teaching Hospital, built in 1979, serves more than 18,000 patients per year in one of the smallest teaching hospitals in the United States.The college is currently working to raise $15 million toward building a new Veterinary Medical Learning Center, which will include a new teaching hospital as well as classrooms and laboratories that will allow for the education of more veterinarians.The goal is to increase enrollment to 150 when the Veterinary Medical Learning Center is built.Fore more information, see www.vet.uga.edu/giving/campaign.php.

For more information, please click here

Contacts:
Kat Gilmore
706/543-5485

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Nanomedicine

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Sensors

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Discoveries

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Tools

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project