Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne scientists reveal secret of nanoparticle crystallization in real time

Assistant physicist Zhang Jiang (from left) examines a X-ray diffraction as physicist Jin Wang and nanoscientist Xiao-Min Lin prepare a sample at one of the Advanced Photon Source’s beamlines. The Argonne scientists have examined nanoparticle crystallization in unprecedented detail using the high powered X-rays of the APS.
Assistant physicist Zhang Jiang (from left) examines a X-ray diffraction as physicist Jin Wang and nanoscientist Xiao-Min Lin prepare a sample at one of the Advanced Photon Source’s beamlines. The Argonne scientists have examined nanoparticle crystallization in unprecedented detail using the high powered X-rays of the APS.

Abstract:
A collaboration between the Advanced Photon Source and Center for Nanoscale Materials at U.S. Department of Energy's (DOE) Argonne National Laboratory has "seen" the crystallization of nanoparticles in unprecedented detail.

Argonne scientists reveal secret of nanoparticle crystallization in real time

Argonne, IL | Posted on May 15th, 2010

"Nanoscience is a hot issue right now, and people are trying to create self-assembled nanoparticle arrays for data and memory storage," Argonne assistant physicist Zhang Jiang said. "In these devices, the degree of ordering is an important factor."

In order to call up a specific bit of data, it is ideal to store information on a two-dimensional crystal lattice with well-defined graphical coordinates. For example, every bit of information of a song saved on a hard drive must be stored at specific locations, so it can be retrieved later. However, in most cases, defects are inherent in nanoparticle crystal lattices.

"Defects in a lattice are like potholes on a road," Argonne physicist Jin Wang said. "When you're driving on the highway, you would like to know whether it is going to be a smooth ride or if you will have to zigzag in order to avoid a flat tire. Also, you want to know how the potholes form in the first place, so we can eliminate them."

Controlling the degree of ordering in nanoparticle arrays has been elusive. The number of nanoparticles a chemist can make in a small volume is astonishingly large.

"We can routinely produce 10>14 particles in a few droplets of solution. That is more than the number of stars in the Milky Way Galaxy," Argonne nanoscientist Xiao-Min Lin. "To find conditions under which nanoparticles can self-assemble into a crystal lattice with a low number of defects is quite challenging."

Because nanoparticles are so small, it is not easy to see how ordered the lattice is during the self-assembly process. Electron microscopy can see individual nanoparticles, but the field of view is too small for scientists to get a "big picture" of what the ordering is like in macroscopic length scale. It also doesn't work for wet solutions.

"With local ordering, one cannot assume the same order exists throughout the whole structure; it's like seeing a section of road and assuming it is straight and well constructed all the way to the end," Wang said.

The same group of researchers at Argonne, together with their collaborators at the University of Chicago, discovered that under the right conditions, nanoparticles can float at a liquid-air interface of a drying liquid droplet and become self-organized.

This allows the two-dimensional crystallization process to occur over a much longer time scale. "You typically don't expect metallic particles to float. It is like throwing stones into a pond and expecting them to float on the surface," Lin said. "But in the nanoworld, things behave differently."

Using high-resolution X-ray scattering at the Advanced Photon Source (APS), Jiang and the others examined the crystallization process in unprecedented detail as it forms in real time. They discovered that the nanoparticle arrays formed at the liquid-air interface can enter a regime of a highly crystalline phase defined in the classical two-dimensional crystal theory. Only when the solvent starts to dewet from the surface, do defects and disorder begin to appear.

"We can probe the entire macroscopic sample and monitor what's happening in real time," Jiang said. "This allows us to understand what parameters are important to control the self-assembly process."

With this level of understanding, the scientists hope that one day devices such as the iPod Nano can be made from nanoparticles.

A paper on this research was published in Nano Letters.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Advanced Photon Source at Argonne National Laboratory is one of four synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science, Office of Basic Energy Sciences (BES). The APS is the source of the Western Hemisphere’s brightest x-ray beams for research in virtually every scientific discipline. More than 3,500 researchers representing universities, industry, and academic institutions from every U.S. state visit the APS each year to carry out both applied and basic research in support of the BES mission.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Memory Technology

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

Self Assembly

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Discoveries

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Materials/Metamaterials

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Announcements

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE