Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne scientists reveal secret of nanoparticle crystallization in real time

Assistant physicist Zhang Jiang (from left) examines a X-ray diffraction as physicist Jin Wang and nanoscientist Xiao-Min Lin prepare a sample at one of the Advanced Photon Source’s beamlines. The Argonne scientists have examined nanoparticle crystallization in unprecedented detail using the high powered X-rays of the APS.
Assistant physicist Zhang Jiang (from left) examines a X-ray diffraction as physicist Jin Wang and nanoscientist Xiao-Min Lin prepare a sample at one of the Advanced Photon Source’s beamlines. The Argonne scientists have examined nanoparticle crystallization in unprecedented detail using the high powered X-rays of the APS.

Abstract:
A collaboration between the Advanced Photon Source and Center for Nanoscale Materials at U.S. Department of Energy's (DOE) Argonne National Laboratory has "seen" the crystallization of nanoparticles in unprecedented detail.

Argonne scientists reveal secret of nanoparticle crystallization in real time

Argonne, IL | Posted on May 15th, 2010

"Nanoscience is a hot issue right now, and people are trying to create self-assembled nanoparticle arrays for data and memory storage," Argonne assistant physicist Zhang Jiang said. "In these devices, the degree of ordering is an important factor."

In order to call up a specific bit of data, it is ideal to store information on a two-dimensional crystal lattice with well-defined graphical coordinates. For example, every bit of information of a song saved on a hard drive must be stored at specific locations, so it can be retrieved later. However, in most cases, defects are inherent in nanoparticle crystal lattices.

"Defects in a lattice are like potholes on a road," Argonne physicist Jin Wang said. "When you're driving on the highway, you would like to know whether it is going to be a smooth ride or if you will have to zigzag in order to avoid a flat tire. Also, you want to know how the potholes form in the first place, so we can eliminate them."

Controlling the degree of ordering in nanoparticle arrays has been elusive. The number of nanoparticles a chemist can make in a small volume is astonishingly large.

"We can routinely produce 10>14 particles in a few droplets of solution. That is more than the number of stars in the Milky Way Galaxy," Argonne nanoscientist Xiao-Min Lin. "To find conditions under which nanoparticles can self-assemble into a crystal lattice with a low number of defects is quite challenging."

Because nanoparticles are so small, it is not easy to see how ordered the lattice is during the self-assembly process. Electron microscopy can see individual nanoparticles, but the field of view is too small for scientists to get a "big picture" of what the ordering is like in macroscopic length scale. It also doesn't work for wet solutions.

"With local ordering, one cannot assume the same order exists throughout the whole structure; it's like seeing a section of road and assuming it is straight and well constructed all the way to the end," Wang said.

The same group of researchers at Argonne, together with their collaborators at the University of Chicago, discovered that under the right conditions, nanoparticles can float at a liquid-air interface of a drying liquid droplet and become self-organized.

This allows the two-dimensional crystallization process to occur over a much longer time scale. "You typically don't expect metallic particles to float. It is like throwing stones into a pond and expecting them to float on the surface," Lin said. "But in the nanoworld, things behave differently."

Using high-resolution X-ray scattering at the Advanced Photon Source (APS), Jiang and the others examined the crystallization process in unprecedented detail as it forms in real time. They discovered that the nanoparticle arrays formed at the liquid-air interface can enter a regime of a highly crystalline phase defined in the classical two-dimensional crystal theory. Only when the solvent starts to dewet from the surface, do defects and disorder begin to appear.

"We can probe the entire macroscopic sample and monitor what's happening in real time," Jiang said. "This allows us to understand what parameters are important to control the self-assembly process."

With this level of understanding, the scientists hope that one day devices such as the iPod Nano can be made from nanoparticles.

A paper on this research was published in Nano Letters.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Advanced Photon Source at Argonne National Laboratory is one of four synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science, Office of Basic Energy Sciences (BES). The APS is the source of the Western Hemisphere’s brightest x-ray beams for research in virtually every scientific discipline. More than 3,500 researchers representing universities, industry, and academic institutions from every U.S. state visit the APS each year to carry out both applied and basic research in support of the BES mission.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Memory Technology

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Smallest hard disk to date writes information atom by atom July 20th, 2016

Atomic bits despite zero-point energy? Jülich scientists explore novel ways of developing stable nanomagnets July 11th, 2016

Self Assembly

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Discoveries

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Materials/Metamaterials

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Announcements

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Research partnerships

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic