Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stanford Team Wins $200,000 MIT Clean Energy Prize with Revolutionary Electrode Design to Improve Solar Panel Performance

Abstract:
C3Nano Inc., a team from Stanford University, was named the top winner of the MIT Clean Energy Prize for their revolutionary design that will increase the efficiency of solar photovoltaic panels. The national competition was founded by MIT, the U.S. Department of Energy and NSTAR to accelerate the pace of clean energy entrepreneurship.

Stanford Team Wins $200,000 MIT Clean Energy Prize with Revolutionary Electrode Design to Improve Solar Panel Performance

Boston, MA | Posted on May 13th, 2010

The team of PhD chemical engineering students has developed a carbon nano-based transparent electrode that will increase the efficiency of thin film photovoltaic solar panels by allowing up to 12 percent more sunlight to penetrate the panels. The electrode -- a conductor through which electric current is passed -- is also less expensive, more lightweight and flexible than electrodes made out of conventional materials.

"Our innovation is a cross-cutting technology that not only has the potential to increase the efficiency of solar panels, it can be used in the manufacture of television, computer and cell phone touch screens and electronic displays to increase performance and lower cost," said Melburne C. LeMieux, C3Nano Founder and Chief Science Officer. "Winning this competition literally enables us to take the next step towards moving this important technology out of the laboratory and into the marketplace."

C3Nano was selected -- from over sixty other teams from 35 universities -- by prominent judges for their technology's potential impact to enhance existing photovoltaic systems. With production doubling every two years, photovoltaics have become the world's fastest growing energy technology. C3Nano's transparent electrodes can also be used in the $4 billion electronic display and thin film market -- offering higher transparency and flexibility at one-tenth the cost of current electrode materials.

"Solar energy technologies diversify energy supplies and offset greenhouse gas emissions, but their costs have so far been a barrier to widespread installation in New England," said Tom May, Chairman, President and CEO of NSTAR and co-sponsor of the prize. "The technology developed by this team is potentially transformative in making solar energy a viable option to consumers throughout the region and has the added benefit of other significant applications."

The MIT Clean Energy Prize provides capital resources and mentoring to help clean energy entrepreneurs from universities across the country to jump start businesses. Now in its third year, the competition has helped launch over a dozen businesses -- many of them in Massachusetts -- that have raised more than $65 million from private investors and the government.

"The competition continues to attract the nation's brightest minds for turning innovative ideas into marketplace realities to build a clean energy economy," said May.

The C3Nano, Inc. team includes: Ajay Virkar, Jeff Sabados and Melburne LeMieux under the guidance of Professor Zhenan Bao's Chemical Engineering Lab at Stanford University.

For additional information on the MIT Clean Energy Prize, please visit www.mitcep.org.

####

For more information, please click here

Contacts:
NSTAR Media Relations
Caroline Allen, 617-424-2460


MIT Clean Energy Prize Managing Director
Janet Lin, 617-529-8315

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Environment

Novel functionalized nanomaterials for CO2 capture May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Los Alamos National Laboratory Expands Scope to Locus Technologies SaaS Contract: Los Alamos National Laboratory Adds Two New Applications to Locus SaaS Platform May 7th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Energy

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

Solar/Photovoltaic

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic