Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Where nanotechnology’s future is incubating

Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)
Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)

Abstract:
ASU's NanoFab facility is teaching industry ways to manufacture better products and helping engineers and scientists develop new technologies

Where nanotechnology’s future is incubating

Phoenix, AZ | Posted on May 13th, 2010

Exclamations about the explosive potential of engineering materials at the nanometer scale are sounding ever more incredible.

Many are trying to accomplish feats of intricate architecture at the atomic and molecular levels that open possibilities for mind-boggling technological capabilities.

At the same, engineers are steadfastly focusing on nuts-and-bolts nanotechnology, laying groundwork for industry innovation and economic development.

It's in this work that nanotechnology is finding the most practical applications and having the most widespread impact.

In the Southwest United States, a leading hub of these endeavors is the NanoFab (Fab as in "fabrication") laboratory at Arizona State University.

Nano networking

Managed by the Center for Solid State Electronics Research in ASU's Ira A. Fulton Schools of Engineering, the lab is part of the National Nanotechnology Infrastructure Network.

Supported by the National Science Foundation (NSF), the network - with laboratories at 14 major universities - is a leading force in the nation's effort to maintain technological and economic competitiveness.

Facilities at Harvard, Stanford, Cornell, the University of Texas, Georgia Institute of Technology and the University of Washington are among the network's centers.

"The NSF realizes how critical nanotechnology development is to the nation's progress and to stimulating the economy," says Trevor Thornton, a professor in ASU's School of Electrical, Computer and Energy Engineering and director of the Center for Solid State Electronics Research.

"We are providing the expertise and the tools for researchers, industries and entrepreneurs to transform ideas into reality," Thornton says. The NanoFab facility is "the workshop where tangible progress in nanotechnology is incubating."

Technical expertise

For the past seven years, NanoFab has been open to small businesses, large companies and researchers with industry, state and federal government labs and other major universities throughout the Southwest, as well as some users from Europe, Mexico, Florida and the northeastern United States.

They benefit from the expertise ASU researchers offer in areas of engineering critical to developing new and improved technologies, products and services.

"We provide general knowledge about nanotechnology, but we also have kinds of expertise that you can't find in most places," Thornton says.

Driving innovation

One focus is on interfacing - or bonding - of biological materials and inorganic materials, including the interfaces between biological systems and semiconductor materials.

NanoFab's customers can benefit from work by ASU engineering researchers Nongjian Tao and Erica Forzani, who are binding proteins and polymers, creating mechanical systems that work with biological and chemical components.

Similarly, scientists in the Center for EcoGenomics in ASU's Biodesign Institute are using the NanoFab capabilities to fabricate sensor arrays that monitor the metabolic processes in individual cells.

"It would be amazing," Thornton says. "You would have the data-crunching ability of a microprocessor combined with the biological capabilities of a living cell."

Assistant research professor Shalini Prasad is among ASU experts in "bio-MEMS," the integration of biological matter with micro-electro-mechanical systems that is proving useful to advances in many areas of science.

All of this research is essential to developing the next generations of technologies in communications, computers, health care and manufacturing, among other fields.

"We have an environment that sparks collaboration between engineers, biologists, chemists and physicists," Thornton says. "These interactions are driving innovation."

Tools of discovery

NanoFab also is providing a distinctive teaching environment "that is going to help get students excited about what can be accomplished in this field," Thornton says.

Today the tools needed for scientific and technological advancement are more sophisticated than ever - and usually too expensive for small businesses and startup ventures to purchase.

That's why some of these enterprises practically take up short-term residence at NanoFab. The ASU researchers educate businesses about what technology they need to pursue their goals, and train clients how to use the laboratory facilities effectively.

"If you want to know how to make something at the nanoscale, this is the place you come to," Thornton says.

Powerhouse potential

NanoFab process development manager Timothy Eschrich, for instance, "can look at a general idea of something an entrepreneur wants to make, and develop the process to make it," Thornton says.

More than that, he adds, "We anticipate needs for the future. A big part of our expertise is being able to foresee what new kinds of tools will be needed to take the next steps beyond what we are now doing."

With the NSF's decision to extend its support of the National Nanotechnology Infrastructure Network through 2014, the ASU facility was recently able to obtain three new pieces of research and manufacturing equipment.

When prospective users visit NanoFab, "they are always amazed by the state-of-the-art facilities we have," Thornton says. With new additions to the laboratories, "people will see what a nanotechnology engineering powerhouse we are capable of becoming."

For more information, see the NanoFab website and the Center for Solid State Electronics Research website at www.fulton.asu.edu/fulton/csser/

####

For more information, please click here

Contacts:
Joe Kullman

(480) 965-8122
Ira A. Fulton Schools of Engineering

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Laboratories

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Tools

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project