Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Where nanotechnology’s future is incubating

Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)
Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)

Abstract:
ASU's NanoFab facility is teaching industry ways to manufacture better products and helping engineers and scientists develop new technologies

Where nanotechnology’s future is incubating

Phoenix, AZ | Posted on May 13th, 2010

Exclamations about the explosive potential of engineering materials at the nanometer scale are sounding ever more incredible.

Many are trying to accomplish feats of intricate architecture at the atomic and molecular levels that open possibilities for mind-boggling technological capabilities.

At the same, engineers are steadfastly focusing on nuts-and-bolts nanotechnology, laying groundwork for industry innovation and economic development.

It's in this work that nanotechnology is finding the most practical applications and having the most widespread impact.

In the Southwest United States, a leading hub of these endeavors is the NanoFab (Fab as in "fabrication") laboratory at Arizona State University.

Nano networking

Managed by the Center for Solid State Electronics Research in ASU's Ira A. Fulton Schools of Engineering, the lab is part of the National Nanotechnology Infrastructure Network.

Supported by the National Science Foundation (NSF), the network - with laboratories at 14 major universities - is a leading force in the nation's effort to maintain technological and economic competitiveness.

Facilities at Harvard, Stanford, Cornell, the University of Texas, Georgia Institute of Technology and the University of Washington are among the network's centers.

"The NSF realizes how critical nanotechnology development is to the nation's progress and to stimulating the economy," says Trevor Thornton, a professor in ASU's School of Electrical, Computer and Energy Engineering and director of the Center for Solid State Electronics Research.

"We are providing the expertise and the tools for researchers, industries and entrepreneurs to transform ideas into reality," Thornton says. The NanoFab facility is "the workshop where tangible progress in nanotechnology is incubating."

Technical expertise

For the past seven years, NanoFab has been open to small businesses, large companies and researchers with industry, state and federal government labs and other major universities throughout the Southwest, as well as some users from Europe, Mexico, Florida and the northeastern United States.

They benefit from the expertise ASU researchers offer in areas of engineering critical to developing new and improved technologies, products and services.

"We provide general knowledge about nanotechnology, but we also have kinds of expertise that you can't find in most places," Thornton says.

Driving innovation

One focus is on interfacing - or bonding - of biological materials and inorganic materials, including the interfaces between biological systems and semiconductor materials.

NanoFab's customers can benefit from work by ASU engineering researchers Nongjian Tao and Erica Forzani, who are binding proteins and polymers, creating mechanical systems that work with biological and chemical components.

Similarly, scientists in the Center for EcoGenomics in ASU's Biodesign Institute are using the NanoFab capabilities to fabricate sensor arrays that monitor the metabolic processes in individual cells.

"It would be amazing," Thornton says. "You would have the data-crunching ability of a microprocessor combined with the biological capabilities of a living cell."

Assistant research professor Shalini Prasad is among ASU experts in "bio-MEMS," the integration of biological matter with micro-electro-mechanical systems that is proving useful to advances in many areas of science.

All of this research is essential to developing the next generations of technologies in communications, computers, health care and manufacturing, among other fields.

"We have an environment that sparks collaboration between engineers, biologists, chemists and physicists," Thornton says. "These interactions are driving innovation."

Tools of discovery

NanoFab also is providing a distinctive teaching environment "that is going to help get students excited about what can be accomplished in this field," Thornton says.

Today the tools needed for scientific and technological advancement are more sophisticated than ever - and usually too expensive for small businesses and startup ventures to purchase.

That's why some of these enterprises practically take up short-term residence at NanoFab. The ASU researchers educate businesses about what technology they need to pursue their goals, and train clients how to use the laboratory facilities effectively.

"If you want to know how to make something at the nanoscale, this is the place you come to," Thornton says.

Powerhouse potential

NanoFab process development manager Timothy Eschrich, for instance, "can look at a general idea of something an entrepreneur wants to make, and develop the process to make it," Thornton says.

More than that, he adds, "We anticipate needs for the future. A big part of our expertise is being able to foresee what new kinds of tools will be needed to take the next steps beyond what we are now doing."

With the NSF's decision to extend its support of the National Nanotechnology Infrastructure Network through 2014, the ASU facility was recently able to obtain three new pieces of research and manufacturing equipment.

When prospective users visit NanoFab, "they are always amazed by the state-of-the-art facilities we have," Thornton says. With new additions to the laboratories, "people will see what a nanotechnology engineering powerhouse we are capable of becoming."

For more information, see the NanoFab website and the Center for Solid State Electronics Research website at www.fulton.asu.edu/fulton/csser/

####

For more information, please click here

Contacts:
Joe Kullman

(480) 965-8122
Ira A. Fulton Schools of Engineering

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Laboratories

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Researchers synthesize material for efficient plasmonic devices in mid-infrared range February 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

MEMS

MEMS/Sensors Drive IoT/E Innovation in Europe: MEMS Executive Congress Europe Speakers Explore Internet of Things/Everything in Automotive, Consumer, Industrial Markets, 9-10, March in Copenhagen February 9th, 2015

STMicroelectronics Leads European Research Project to Develop Next-Generation Optical MEMS: Extension to a project launched in 2013 builds on current efforts to enable technologies for next-generation applications February 4th, 2015

Entegris Launches Dispense System Optimized for 3D and MEMS Applications: New IntelliGen® MV system delivers process efficiencies and defect reduction in dispensing mid-viscosity fluids February 3rd, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

Nanomedicine

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Sensors

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Tools

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Nanobiotechnology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE