Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Where nanotechnology’s future is incubating

Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)
Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)

Abstract:
ASU's NanoFab facility is teaching industry ways to manufacture better products and helping engineers and scientists develop new technologies

Where nanotechnology’s future is incubating

Phoenix, AZ | Posted on May 13th, 2010

Exclamations about the explosive potential of engineering materials at the nanometer scale are sounding ever more incredible.

Many are trying to accomplish feats of intricate architecture at the atomic and molecular levels that open possibilities for mind-boggling technological capabilities.

At the same, engineers are steadfastly focusing on nuts-and-bolts nanotechnology, laying groundwork for industry innovation and economic development.

It's in this work that nanotechnology is finding the most practical applications and having the most widespread impact.

In the Southwest United States, a leading hub of these endeavors is the NanoFab (Fab as in "fabrication") laboratory at Arizona State University.

Nano networking

Managed by the Center for Solid State Electronics Research in ASU's Ira A. Fulton Schools of Engineering, the lab is part of the National Nanotechnology Infrastructure Network.

Supported by the National Science Foundation (NSF), the network - with laboratories at 14 major universities - is a leading force in the nation's effort to maintain technological and economic competitiveness.

Facilities at Harvard, Stanford, Cornell, the University of Texas, Georgia Institute of Technology and the University of Washington are among the network's centers.

"The NSF realizes how critical nanotechnology development is to the nation's progress and to stimulating the economy," says Trevor Thornton, a professor in ASU's School of Electrical, Computer and Energy Engineering and director of the Center for Solid State Electronics Research.

"We are providing the expertise and the tools for researchers, industries and entrepreneurs to transform ideas into reality," Thornton says. The NanoFab facility is "the workshop where tangible progress in nanotechnology is incubating."

Technical expertise

For the past seven years, NanoFab has been open to small businesses, large companies and researchers with industry, state and federal government labs and other major universities throughout the Southwest, as well as some users from Europe, Mexico, Florida and the northeastern United States.

They benefit from the expertise ASU researchers offer in areas of engineering critical to developing new and improved technologies, products and services.

"We provide general knowledge about nanotechnology, but we also have kinds of expertise that you can't find in most places," Thornton says.

Driving innovation

One focus is on interfacing - or bonding - of biological materials and inorganic materials, including the interfaces between biological systems and semiconductor materials.

NanoFab's customers can benefit from work by ASU engineering researchers Nongjian Tao and Erica Forzani, who are binding proteins and polymers, creating mechanical systems that work with biological and chemical components.

Similarly, scientists in the Center for EcoGenomics in ASU's Biodesign Institute are using the NanoFab capabilities to fabricate sensor arrays that monitor the metabolic processes in individual cells.

"It would be amazing," Thornton says. "You would have the data-crunching ability of a microprocessor combined with the biological capabilities of a living cell."

Assistant research professor Shalini Prasad is among ASU experts in "bio-MEMS," the integration of biological matter with micro-electro-mechanical systems that is proving useful to advances in many areas of science.

All of this research is essential to developing the next generations of technologies in communications, computers, health care and manufacturing, among other fields.

"We have an environment that sparks collaboration between engineers, biologists, chemists and physicists," Thornton says. "These interactions are driving innovation."

Tools of discovery

NanoFab also is providing a distinctive teaching environment "that is going to help get students excited about what can be accomplished in this field," Thornton says.

Today the tools needed for scientific and technological advancement are more sophisticated than ever - and usually too expensive for small businesses and startup ventures to purchase.

That's why some of these enterprises practically take up short-term residence at NanoFab. The ASU researchers educate businesses about what technology they need to pursue their goals, and train clients how to use the laboratory facilities effectively.

"If you want to know how to make something at the nanoscale, this is the place you come to," Thornton says.

Powerhouse potential

NanoFab process development manager Timothy Eschrich, for instance, "can look at a general idea of something an entrepreneur wants to make, and develop the process to make it," Thornton says.

More than that, he adds, "We anticipate needs for the future. A big part of our expertise is being able to foresee what new kinds of tools will be needed to take the next steps beyond what we are now doing."

With the NSF's decision to extend its support of the National Nanotechnology Infrastructure Network through 2014, the ASU facility was recently able to obtain three new pieces of research and manufacturing equipment.

When prospective users visit NanoFab, "they are always amazed by the state-of-the-art facilities we have," Thornton says. With new additions to the laboratories, "people will see what a nanotechnology engineering powerhouse we are capable of becoming."

For more information, see the NanoFab website and the Center for Solid State Electronics Research website at www.fulton.asu.edu/fulton/csser/

####

For more information, please click here

Contacts:
Joe Kullman

(480) 965-8122
Ira A. Fulton Schools of Engineering

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Laboratories

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Berkeley Lab scientists grow atomically thin transistors and circuits July 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

MEMS

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

Nanomedicine

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Sensors

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Nanoelectronics

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Tools

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Nanobiotechnology

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic