Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Where nanotechnology’s future is incubating

Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)
Researchers at ASU's NanoFab facility provide expertise to help businesss and industry take advantage of the latest technologies. (Photo: Jessica Slater/ASU)

Abstract:
ASU's NanoFab facility is teaching industry ways to manufacture better products and helping engineers and scientists develop new technologies

Where nanotechnology’s future is incubating

Phoenix, AZ | Posted on May 13th, 2010

Exclamations about the explosive potential of engineering materials at the nanometer scale are sounding ever more incredible.

Many are trying to accomplish feats of intricate architecture at the atomic and molecular levels that open possibilities for mind-boggling technological capabilities.

At the same, engineers are steadfastly focusing on nuts-and-bolts nanotechnology, laying groundwork for industry innovation and economic development.

It's in this work that nanotechnology is finding the most practical applications and having the most widespread impact.

In the Southwest United States, a leading hub of these endeavors is the NanoFab (Fab as in "fabrication") laboratory at Arizona State University.

Nano networking

Managed by the Center for Solid State Electronics Research in ASU's Ira A. Fulton Schools of Engineering, the lab is part of the National Nanotechnology Infrastructure Network.

Supported by the National Science Foundation (NSF), the network - with laboratories at 14 major universities - is a leading force in the nation's effort to maintain technological and economic competitiveness.

Facilities at Harvard, Stanford, Cornell, the University of Texas, Georgia Institute of Technology and the University of Washington are among the network's centers.

"The NSF realizes how critical nanotechnology development is to the nation's progress and to stimulating the economy," says Trevor Thornton, a professor in ASU's School of Electrical, Computer and Energy Engineering and director of the Center for Solid State Electronics Research.

"We are providing the expertise and the tools for researchers, industries and entrepreneurs to transform ideas into reality," Thornton says. The NanoFab facility is "the workshop where tangible progress in nanotechnology is incubating."

Technical expertise

For the past seven years, NanoFab has been open to small businesses, large companies and researchers with industry, state and federal government labs and other major universities throughout the Southwest, as well as some users from Europe, Mexico, Florida and the northeastern United States.

They benefit from the expertise ASU researchers offer in areas of engineering critical to developing new and improved technologies, products and services.

"We provide general knowledge about nanotechnology, but we also have kinds of expertise that you can't find in most places," Thornton says.

Driving innovation

One focus is on interfacing - or bonding - of biological materials and inorganic materials, including the interfaces between biological systems and semiconductor materials.

NanoFab's customers can benefit from work by ASU engineering researchers Nongjian Tao and Erica Forzani, who are binding proteins and polymers, creating mechanical systems that work with biological and chemical components.

Similarly, scientists in the Center for EcoGenomics in ASU's Biodesign Institute are using the NanoFab capabilities to fabricate sensor arrays that monitor the metabolic processes in individual cells.

"It would be amazing," Thornton says. "You would have the data-crunching ability of a microprocessor combined with the biological capabilities of a living cell."

Assistant research professor Shalini Prasad is among ASU experts in "bio-MEMS," the integration of biological matter with micro-electro-mechanical systems that is proving useful to advances in many areas of science.

All of this research is essential to developing the next generations of technologies in communications, computers, health care and manufacturing, among other fields.

"We have an environment that sparks collaboration between engineers, biologists, chemists and physicists," Thornton says. "These interactions are driving innovation."

Tools of discovery

NanoFab also is providing a distinctive teaching environment "that is going to help get students excited about what can be accomplished in this field," Thornton says.

Today the tools needed for scientific and technological advancement are more sophisticated than ever - and usually too expensive for small businesses and startup ventures to purchase.

That's why some of these enterprises practically take up short-term residence at NanoFab. The ASU researchers educate businesses about what technology they need to pursue their goals, and train clients how to use the laboratory facilities effectively.

"If you want to know how to make something at the nanoscale, this is the place you come to," Thornton says.

Powerhouse potential

NanoFab process development manager Timothy Eschrich, for instance, "can look at a general idea of something an entrepreneur wants to make, and develop the process to make it," Thornton says.

More than that, he adds, "We anticipate needs for the future. A big part of our expertise is being able to foresee what new kinds of tools will be needed to take the next steps beyond what we are now doing."

With the NSF's decision to extend its support of the National Nanotechnology Infrastructure Network through 2014, the ASU facility was recently able to obtain three new pieces of research and manufacturing equipment.

When prospective users visit NanoFab, "they are always amazed by the state-of-the-art facilities we have," Thornton says. With new additions to the laboratories, "people will see what a nanotechnology engineering powerhouse we are capable of becoming."

For more information, see the NanoFab website and the Center for Solid State Electronics Research website at www.fulton.asu.edu/fulton/csser/

####

For more information, please click here

Contacts:
Joe Kullman

(480) 965-8122
Ira A. Fulton Schools of Engineering

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Laboratories

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid: Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity" August 4th, 2017

Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology August 2nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Nanomedicine

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Sensors

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Announcements

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Tools

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Nanobiotechnology

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project