Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Andlinger plans blend technical, aesthetic goals for new energy research hub

The view from the end of the Engineering Quadrangle, looking south toward Prospect Avenue, shows the large lecture hall that will replace the former Osborn Clubhouse at 86 Olden St. To the right is the inside of the existing brick wall that delineates the corner of Olden and Prospect Avenue. Visitors to the space are welcomed by gardens.
The view from the end of the Engineering Quadrangle, looking south toward Prospect Avenue, shows the large lecture hall that will replace the former Osborn Clubhouse at 86 Olden St. To the right is the inside of the existing brick wall that delineates the corner of Olden and Prospect Avenue. Visitors to the space are welcomed by gardens.

Abstract:
Architects for Princeton's Andlinger Center for Energy and the Environment have completed initial plans for laboratory, classroom and garden spaces that support the center's mission while creating an inviting new presence at the eastern edge of campus.

By Steven Schultz

Andlinger plans blend technical, aesthetic goals for new energy research hub

Princeton, NJ | Posted on May 12th, 2010

The design provides for specialized facilities for research related to sustainable energy use and production. With a network of gardens and connections to existing buildings, the new spaces are designed to enhance the engineering neighborhood while meeting high standards for sustainable construction.

The plans, developed by the architectural firm of Tod Williams Billie Tsien Associates of New York, call for 127,000 square feet of new construction, as well as a number of smaller renovation projects. The University has submitted the project plans to the regional planning board and expects to begin construction in 2012 after site plan approval and detailed design. The project is expected to be finished in 2015.

Completion of the overall plan marks an important juncture for the Andlinger Center, which was created in 2008 thanks to a $100 million gift from international business leader Gerhard Andlinger, a member of Princeton's class of 1952.

"The research that will be enabled by these new spaces is critically important, yet what is striking about the plan is how gracefully such a sophisticated program is integrated into the natural environment, said Mark Burstein, Princeton's executive vice president. "Williams/Tsien have taken a strength of Princeton's historic campus -- that open spaces are as important as buildings -- and incorporated this theme into the engineering neighborhood."

The gardens give the site a "porosity" or openness that invites people to enter, meet and collaborate, said Ron McCoy, University architect. "Within the building you'll always be moving from garden to garden, from light to light," McCoy said.

Going beyond technical considerations is part of the University's vision for the Andlinger Center, said H. Vincent Poor, dean of the School of Engineering and Applied Science.

"Engineering in general and energy research in particular stand at the intersection of many disciplines," Poor said. "They address problems that have technological components, but also elements of pure science, the complexities of human nature, public policy and economic opportunity. This design is exciting because it will promote progress at all levels."

The plan builds on the findings of a steering committee of faculty members who worked with the New York-based architecture firm of Davis Brody Bond Aedas to develop a program study detailing the needs and space requirements for the project. The overall location of the Andlinger Center and the role of campus neighborhoods, such as arts, sciences and engineering, are described in the University's Campus Plan, which was completed in 2008.

The Andlinger design calls for a set of three interconnected buildings -- the exteriors of which will be mostly masonry brick and glass -- that meet a range of needs, from highly specialized labs to classroom and meeting spaces. The lab with the most demanding technical requirements will be located next to the Engineering Quadrangle's A Wing. That building will include laboratories where the amount of airborne dust is reduced 1,000-fold, a requirement for much nanotechnology research.

It also will contain imaging labs for examining materials at the atomic level. Microscopes operating at that scale require an ultra-low vibration environment, because even the smallest rumble from the street would shake objects so much they could not be properly observed. To achieve such low vibration, those labs must be built directly on top of bedrock, which means placing those facilities below the natural grade level.

This aspect of the design presented a challenge in making these lower level spaces appealing, said Pablo Debenedetti, vice dean of engineering and chair of the Andlinger steering committee.

"Tod and Billie have come up with a really beautiful solution," Debenedetti said. Instead of being fully underground, the lower level spaces will open to gardens. "They are bringing natural light and a contemplative, peaceful feeling to the place."

Creating a connection between the built and natural environments was a key motivation throughout the project, said Tod Williams, the principal architect, who earned his bachelor's and master's degrees at Princeton in 1965 and 1967.

"I knew the engineering area well and didn't feel like it was part of the fabric of the University," Williams said. "I was thrilled to realize we might contribute to the research and make it a loved portion of campus."

Paying particular attention to the ground itself results in a design for buildings that are not imposing in height, Williams said. The buildings will have only three floors, so visitors will either stay on the "campus level," go down to the "garden level" or go up one flight to the second level, which will be even with the main floor of the EQuad. "We wanted to emphasize the plane of the ground, to be as close as possible to that primary surface," Williams said.

Siting the buildings on bedrock also improves the energy efficiency of the lab, because the ground will be used to moderate the building temperature during hot and cold weather. This feature is among many aspects intended to make the project meet the equivalent of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) Silver standards.

Particular attention is being paid to the buildings' major utilities, including the heating, cooling and electrical systems. Air handling systems will rely as much as possible on the natural flow of air, and heat recovery systems will harvest heat from exhaust air to reduce heating bills. The building also will have "green roofs" on which plantings filter and retain storm water, while further insulating the building.

"Much of the progress in sustainability will come in further detailing, but the initial concept provides a very good foundation for meeting the University's goals," Burstein said.

Next to the laboratory building, a second main building will provide office and other research space. It will connect to the EQuad's E Wing, as well as to Bowen Hall, the current focus of materials science research.

The third structure will be a lecture hall at the intersection of Olden Street and Prospect Avenue. Construction of that portion of the project will require demolition of the former Osborn Clubhouse at 86 Olden St, former home of the Fields Center, which moved to 58 Prospect Ave. in September. The Ferris Thompson Gateway on Prospect and the brick wall along the corner of Olden and Prospect will be preserved.

Located on the corner and facing the center of campus, the planned lecture hall presents an important outward-looking face for the Andlinger Center, Debenedetti said. Classes, talks and conferences will help connect the technical work of the center with other disciplines, while the space itself will draw people into a part of campus that has not been used as effectively as other areas.

"The location for the Andlinger Center is in an essential pivot point for the overall campus," Burstein said. "Tod and Billie's design takes full advantage of this location by dramatically improving the EQuad and opening connections southward to the science neighborhood.

Pending municipal approval, initial work on the site, including placement of utilities and demolition, would begin in 2011. The University also continues to seek additional donors to support the construction of the lecture hall and other key components of the project.

####

For more information, please click here

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project