Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > From beams to buckyballs

Abstract:
Happy 50th to the laser, which set the stage for Rice's nano revolution

From beams to buckyballs

Houston, TX | Posted on May 12th, 2010

Twenty-five years after the laser beam came to be, a historic meeting took place at Rice University that led to the discovery of the buckminsterfullerene, the carbon 60 molecule for which two Rice scientists won the Nobel Prize.

Now that the buckyball is celebrating its own 25th anniversary, it's worth noting that one wouldn't have happened without the other.

During the Year of Nano, Rice will honor Nobel laureates Robert Curl and the late Richard Smalley, their research colleague and co-laureate, Sir Harold Kroto, then of the University of Sussex, and former graduate students James Heath and Sean O'Brien with a series of events culminating in an Oct. 11-13 symposium at Rice on nanotechnology's past, present and future.

But Curl happily throws a share of the credit to another Rice professor, Frank Tittel, a laser pioneer whose work continues to break new ground in chemical sensing.

Fifty years ago this Sunday, on May 16, 1960, Hughes Research scientist Theodore Maiman fired off the first laser beam from a small ruby rod, a camera flashlamp and a power supply.

Not long after the news was reported in the New York Times, Tittel, now Rice's J.S. Abercrombie Professor in Electrical and Computer Engineering, was asked by his new bosses at General Electric to recreate Maiman's device. "That used brute force," Tittel said of his first laser, later donated to the Franklin Institute Science Museum in Philadelphia. "Now we're more sophisticated."

Tittel joined Rice in 1967 and quickly built the first tunable laser in Texas, used in spectroscopy and sensing devices. He also formed collaborations with other professors, including Curl, who is now Rice's University Professor Emeritus and Kenneth S. Pitzer-Schlumberger Professor Emeritus of Natural Sciences.

Kroto, a chemist by training who developed an interest in astrophysics, visited Rice in 1985 to use a unique apparatus designed by Smalley with help from Tittel and Curl to figure out why chains of carbon molecules were so abundant in interstellar clouds. The apparatus incorporated lasers to vaporize a thin disk of graphite and as part of a spectrometer to analyze the compounds that resulted.

Curl said Smalley initially showed little interest in pursuing the experiment, but Curl thought Kroto's ideas had merit. "My argument was that the experiment might actually lead to a test of a proposal of the origin of the diffuse interstellar bands," he said. "Rick could see the advantage of trying to find the solution to a 50-year-old mystery."

But something else caught their attention. The experiments in late 1985 showed an abundance of carbon 60, which set the scientists racing to figure out what such a molecule would look like. "We had this problem that this (carbon cluster) was a little strong, and it looked like there was something there," Curl said, noting that the team pursued the interstellar question no further. "The discovery of the fullerenes drew all our attention."

Smalley was the first to find the solution by assembling a paper model of hexagons and pentagons that turned out to be identical to a soccer ball. (In a webcast available here, Curl described how the team came up with the key to the solution over enchiladas at a Houston diner.)

Within days, Nature received their paper announcing the discovery of the buckminsterfullerene, which they described as a "truncated icosahedron." The scientists noted they were "disturbed at the number of letters and syllables in the rather fanciful but highly appropriate name. … A number of alternatives come to mind (for example, ballene, spherene, soccerene, carbosoccer), but we prefer to let this issue of nomenclature be settled by consensus." It became popularly known as the buckyball.

Tittel will take part in the October symposium that will feature a discussion of the discovery by Curl; Kroto, now the Francis Eppes Professor in the Department of Chemistry and Biochemistry at Florida State University; Heath, the Elizabeth W. Gilloon Professor of Chemistry at the California Institute of Technology; and O'Brien, vice president of process engineering at MEMtronics.

The symposium will include talks by top international scientists on the state of the art in nanotechnology and its future. Related events include the 10-10-10 Gala and the Oct. 11 Bucky ‘Ball' Celebration, an on-campus open house of all things nano at which the National Historic Chemical Landmark designation for the buckyball discovery will be bestowed upon Rice's Space Science Building.

Lockheed Martin is the primary sponsor of the Year of Nano organized by Rice's Richard E. Smalley Institute for Nanoscale Science and Technology. The institutions are partners in the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice, aka LANCER, through which researchers in academia tackle the high-tech industry's toughest problems.

Rice scientists are also sponsoring a public talk about the 50th anniversary of the laser at the American Physical Society Division of Atomic, Molecular and Optical Physics meeting. It will be held at 8 p.m. May 26 at the Hyatt Regency Houston Hotel, 1200 Louisiana St., Houston. The talk is free and open to all.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project