Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Finger-pricks a thing of the past

Exhaled air from diabetics contains slightly higher levels of acetone vapor than healthy persons. A new kind of sensor (a) can now selectively detect acetone even in the smallest concentrations; this is due to a layer of a unique crystal phase of tungsten oxide, which thanks to a special procedure becomes porous like a sponge.  (Credit: ETH Zurich)
Exhaled air from diabetics contains slightly higher levels of acetone vapor than healthy persons. A new kind of sensor (a) can now selectively detect acetone even in the smallest concentrations; this is due to a layer of a unique crystal phase of tungsten oxide, which thanks to a special procedure becomes porous like a sponge. (Credit: ETH Zurich)

Abstract:
ETH-Zurich researchers have developed a new kind of sensor that can immediately gauge whether a person is suffering from type 1 diabetes upon coming into contact with their breath.

Finger-pricks a thing of the past

Zurich | Posted on May 11th, 2010

Acetone is also found in a healthy person's breath, but the concentration is only about 900 ppb (particles per billion); in people suffering from type 1 diabetes, however, the concentration is double that; and in the case of a ketoacidosis it can be even higher. That's why the sensor developed at ETH Zurich works so well: it can detect as few as 20 ppb of acetone and even works at extremely high humidity levels of over 90 percent - like in the human breath.

Flame-made Nanosensors

Sotiris Pratsinis, professor of particle technology at the Institute of Process Engineering, and his team showcased the novel sensor on May 1 in the journal Analytical Chemistry of the American Chemical Society. They used a substrate with gold electrodes for the sensor and coated it with an ultra-thin semiconductor film made of nanoparticles. These particles consisted of tungsten oxide mixed with silicon, thus greatly improving the sensitivity of the sensor. The mixture is produced in a flame at a temperature of over 2200° C; the nanoparticles rise in a greenish-yellow cloud and are collected on the carrier substrate, which the researchers then cool with water. Through this rapid heating and cooling, a vitreous semiconductor layer forms on the electrodes stably capturing.the metastable crystalline phase of epsilon tungsten oxide that resonates with acetone giving its required high selectivity for undisputable detection of acetone vapor in the human breath.

Using high-resolution electron microscopes, the researchers observed that the deposited material exhibited an unusual spongy structure. The acetone molecules get caught up in the pores and begin to react with the tungsten oxide; if the breath contains relatively high acetone concentrations (> 1800 ppm), the electrical resistance of the material drops drastically and thus more electricity flows between the electrodes generating a correspondingly strong signal. For lower concentrations of acetone, on the other hand, the resistance drops significantly less.

Implications

In the future, ETH-Zurich professor Sotiris Pratsinis also hopes to develop materials that would be able to detect other chronic illnesses by breath analysis using such sensors. As far as diabetes sufferers are concerned, a handy, easy-to-use device would make a huge difference; it would mean they could make their own quick and easy diagnoses instead of taking blood samples to measure the blood sugar level, as they have had to do up to now, making the irksome daily finger-pricks a thing of the past. Sensors like this could also be put to good use in hospital emergency rooms, where it would provide a fuss-free method of establishing whether a patient has suffered a diabetic ketoacidosis.

Wanted: partner from medicine

The sensor is just a prototype for now; however, Pratsinis is currently on the lookout for a partner from medicine to turn it into a measuring device for everyday use.

Non-invasive methods to diagnose illnesses are becoming increasingly important and being fast, cheap and easy to use breath analysis is a key aspect in lowering the spiraling medical costs. The breath mainly consists of a mixture of nitrogen, oxygen, carbon dioxide and water, along with over 1,000 volatile substances that are only present in very small concentrations; these also include volatile organic compounds produced by the body itself. Some are typical for particular illnesses and serve as markers - like acetone for type-1 diabetes.

The project was made possible by highly motivated associates, Marco Righettoni, PhD student, and Dr. Antonio Tricoli of the Particle Technology Laboratory at the Department of Mechanical and Process Engineering that were funded by the Swiss National Science Foundation, European Space Agency and CCMX-NANCER. Antonio Tricoli was nominated for the Material Research Prize 2010, which will be awarded at the MRC Graduate Symposium on May 10.

References

Righettoni M, Tricoli A, Pratsinis SE. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis, Anal. Chem. 2010, 82, 3581. DOI:10.1021/ac902695n

Tricoli A, Graf M, Mayer F, Kühne S, Hierlemann A, Pratsinis SE. Micropatterning layers by flame aerosol deposition-annealing, Adv. Mater. 2008, 20, 3005. DOI:10.1002/adma.200701844

Tricoli A, Pratsinis SE. Dispersed nanoelectrode devices, Nature Nanotech. 2010, 5, 54. DOI:10.1038/nnano.2009.349


####

For more information, please click here

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanomedicine

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Arrowhead to Report Fiscal 2014 Third Quarter Financial Results- Conference Call Scheduled for Tuesday, August 12, 2014 - July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Sensors

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Nanobiotechnology

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE