Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-particle suspension in pharmaceutical mixing

Image shows phenytoin before (x10,000) and after (x100,000) thinky mixing
Image shows phenytoin before (x10,000) and after (x100,000) thinky mixing

Abstract:
Thinky mixers from Intertronics create nano-particle suspensions of medical compounds more reliably and quicker than traditional methods

Nano-particle suspension in pharmaceutical mixing

UK | Posted on May 11th, 2010

A new clever mixing process is announced by the people at Intertronics using the Thinky ARV-310 and Thinky ARV-5000 industrial non-contact "planetary" mixers for engineering compounds. In particular these machines are excellent in creating nano-particle suspensions of medical compounds more reliably and quicker than traditional methods. This can often overcome problems of dilution where materials have negligible water solubility and they enable mixing, dispersal and degassing in amounts as small as 0.5ml, up to large, laboratory level quantities.

The new process involves use of a Thinky mixer with zirconia balls which can pulverize poorly water soluble compounds such as medical drug doses using the over 2000 rpm planetary technology. In addition use of the ARV vacuum mixer enables complete elimination of all air bubbles. Commonly a pestle and mortar are used for oral dosage formulations. While this method is generally accepted and effective, this hand process is tedious and tiring, and lacks any degree of repeatability or consistent quality. The new technique is called "nh-Step". The nh-Step makes the mixing process easy, fast, improves physiochemical properties and it can be applied to many oral suspensions. For example, with an initial particle size of 18 micron, utilizing the "nh-Step" process the particle distribution was reduced to 2 microns after only 3 minutes with the Thinky's ARE-250.

The Thinky ARV-310 and Thinky ARV-5000 have the ability to process under vacuum, or under normal pressure, or even automatically switching into vacuum mode from non-vacuum state during the process. It is possible to set the desired vacuum level for different types of ingredients. For high-viscosity materials and materials for which a high degree of de-aeration is required, these are ideal mixers. These mixers can eliminate micron-sized bubbles, without the danger of foaming and messy spillage.

Further information regarding Intertronics' products can be found at www.intertronics.co.uk.

####

For more information, please click here

Contacts:
Peter Swanson
00 44 (0)1865 842842

Copyright © Intertronics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanomedicine

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Tools

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE