Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-particle suspension in pharmaceutical mixing

Image shows phenytoin before (x10,000) and after (x100,000) thinky mixing
Image shows phenytoin before (x10,000) and after (x100,000) thinky mixing

Abstract:
Thinky mixers from Intertronics create nano-particle suspensions of medical compounds more reliably and quicker than traditional methods

Nano-particle suspension in pharmaceutical mixing

UK | Posted on May 11th, 2010

A new clever mixing process is announced by the people at Intertronics using the Thinky ARV-310 and Thinky ARV-5000 industrial non-contact "planetary" mixers for engineering compounds. In particular these machines are excellent in creating nano-particle suspensions of medical compounds more reliably and quicker than traditional methods. This can often overcome problems of dilution where materials have negligible water solubility and they enable mixing, dispersal and degassing in amounts as small as 0.5ml, up to large, laboratory level quantities.

The new process involves use of a Thinky mixer with zirconia balls which can pulverize poorly water soluble compounds such as medical drug doses using the over 2000 rpm planetary technology. In addition use of the ARV vacuum mixer enables complete elimination of all air bubbles. Commonly a pestle and mortar are used for oral dosage formulations. While this method is generally accepted and effective, this hand process is tedious and tiring, and lacks any degree of repeatability or consistent quality. The new technique is called "nh-Step". The nh-Step makes the mixing process easy, fast, improves physiochemical properties and it can be applied to many oral suspensions. For example, with an initial particle size of 18 micron, utilizing the "nh-Step" process the particle distribution was reduced to 2 microns after only 3 minutes with the Thinky's ARE-250.

The Thinky ARV-310 and Thinky ARV-5000 have the ability to process under vacuum, or under normal pressure, or even automatically switching into vacuum mode from non-vacuum state during the process. It is possible to set the desired vacuum level for different types of ingredients. For high-viscosity materials and materials for which a high degree of de-aeration is required, these are ideal mixers. These mixers can eliminate micron-sized bubbles, without the danger of foaming and messy spillage.

Further information regarding Intertronics' products can be found at www.intertronics.co.uk.

####

For more information, please click here

Contacts:
Peter Swanson
00 44 (0)1865 842842

Copyright © Intertronics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Materials/Metamaterials

Production of Biocompatible Polymers in Iran October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Tools

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE