Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemist stitches up speedier chemical reactions

This is Warren Piers, namesake of the Piers catalyst, in his laboratory at the University of Calgary. Credit: Meghan Sired, University of Calgary
This is Warren Piers, namesake of the Piers catalyst, in his laboratory at the University of Calgary. Credit: Meghan Sired, University of Calgary

Abstract:
New details about the Piers catalyst will help chemical industry improve products

Chemist stitches up speedier chemical reactions

Calgary | Posted on May 11th, 2010

Some people have streets named after them. Warren Piers, a chemistry professor at the University of Calgary, has a catalyst penned after him.

And in a paper published today in the online edition of Nature Chemistry, Piers and former graduate student Edwin van der Eide reveal the inner workings of the Piers catalyst at a molecular level of detail not previously available.

"These details are critical for the development of improved catalysts," says Piers, the paper's co-author and S. Robert Blair Professor of chemistry at the University of Calgary. "It will help us and others find new applications and improved reaction conditions for these catalysts."

A chemical catalyst is a molecule that speeds up a chemical reaction without being consumed in the reaction. Enzymes are nature's catalysts, but humankind has invented catalysts that improve and are often required to drive many commercially important chemical reactions.

Catalysts are so versatile that they are used in many chemical industries, ranging from commodity chemicals, those produced on a large scale, to fine chemicals, specialty products like pharmaceuticals, for example.

Catalysts allow companies to make products more economically (lower energy costs) and more selectively (less waste). The details revealed in this paper open the door to new products and materials, creating new companies and markets. One new application involves the production of biofuel hydrocarbon products from seed oils derived from plants.

The paper explores at a level of detail not seen before the inner workings of a chemical reaction called "olefin metathesis." If knitting a wool sweater, catalysts can be thought of as the knitting needles, while the particular stitches required to fashion the wool into a pattern can be viewed as the chemical reaction.

"When we apply this to chemistry, you could say that the stitches -olefin metathesis reactions- have been around for some time. Chemists have been working for decades to figure out which needles do the work most efficiently," says Piers, whose discovery of more efficient olefin metathesis catalysts is now connected with his name.

"The results of this paper are valuable because we now know important details about a significant reaction," he explains. "The olefin metathesis reaction provides an extremely versatile method to break and reform carbon-carbon bonds in materials used in the manufacture of chemical products."

Materia Inc., a Pasadena-based chemical technology company, has the first rights to further develop and commercialize Piers' technology, which is licensed through UTI. Materia was keen to add Piers' technology to their library of catalysts to make their portfolio more versatile.

The Piers catalyst is related to the Nobel Prize-winning family of catalysts known as the Grubbs catalyst, named for their discoverer Robert Grubbs of Caltech. The Piers system has unique chemical attributes that Materia is hoping to exploit in new applications. While not yet as widely used as the Grubbs catalyst, there is strong growth potential for the Piers catalyst due to its high reactivity.

Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction by Edwin F. van der Eide and Warren E. Piers is published in Nature Chemistry at www.nature.com/nchem/index.html

####

For more information, please click here

Contacts:
Leanne Yohemas

403-220-5144

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Chemistry

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Academic/Education

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instrumentsí TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Patents/IP/Tech Transfer/Licensing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Smarter window materials can control light and energy July 22nd, 2015

Magnetic nanoparticles could be key to effective immunotherapy: New method moves promising strategy closer to clinical use July 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project