Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cobalt catalysts for simple water splitting

Abstract:
Researchers from UC Davis and the Massachusetts Institute of Technology are studying how a simple cobalt catalyst can split water molecules. Such inexpensive catalysts could one day be used to convert sunlight into fuel that can run domestic fuel cells.

Cobalt catalysts for simple water splitting

Davis, CA | Posted on May 11th, 2010

In 2008, MIT chemists, led by Professor Dan Nocera, reported that a simple cobalt catalyst could split water at neutral pH to produce oxygen, protons and electrons. The catalyst actually seems to assemble itself over several hours as an electric current is applied, and then begins to bubble oxygen.

"This got a lot of attention from the chemistry community, but no one knew how it worked," said R. David Britt, professor of chemistry at UC Davis.

Britt's lab is working with Nocera's group to use a technique called electron paramagnetic resonance to study the chemical state of cobalt atoms in the catalyst. They found that as more water is split, the proportion of cobalt (IV) increases and the proportion of cobalt (II) decreases. The work opens the door to further studies on these catalysts, the authors write.

Ultimately, catalysts based on relatively abundant elements like cobalt, as opposed to platinum or gold, could make it economical to convert electricity from solar panels or other renewable sources into hydrogen fuel for storage or use. The protons and electrons produced from splitting water would be used in the next step of the process to make hydrogen.

Electron paramagnetic resonance is a technique similar to the nuclear magnetic resonance used in medical imaging. Britt's lab uses it to study catalysts that split water, including both artificial catalysts and those used by plants in photosynthesis.

"Plants figured this out a couple of billion years ago," Britt said.

A paper describing the work is published online this month by the Journal of the American Chemical Society. Other authors on the paper are graduate student J. Gregory McAlpin, postdoctoral researcher Troy Stich and chemistry professor William Casey, all at UC Davis; and at MIT, graduate student Yogesh Surendranath and postdoctoral researchers Mircea Dinca and Sebastian Stoian.

The work was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Media contacts
David Britt
Chemistry
(530) 752-6377


Andy Fell
UC Davis News Service
(530) 752-4533

Copyright © UC Davis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Chemistry

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Quantum calculations broaden the understanding of crystal catalysts: Quantum mechanics and a supercomputer help scientists to identify the position of atoms on the surface of rutile June 22nd, 2016

Droplets finally all the same size -- in a nanodroplet library June 20th, 2016

Nano 'hall of mirrors' causes molecules to mix with light June 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Automotive/Transportation

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic