Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA researchers show how world's smallest 'coffee ring' may help biosensors detect disease

Abstract:
The field of biosensing has recently found an unlikely partner in the quest for increased sensitivity: coffee rings. The next time you spill your coffee on a table, look at the spot left after the liquid has evaporated, and you'll notice it has a darker ring around its perimeter that contains a much higher concentration of particles than the center.

By Matthew Chin

UCLA researchers show how world's smallest 'coffee ring' may help biosensors detect disease

Los Angeles, CA | Posted on May 11th, 2010

Because this "coffee ring" phenomenon occurs with many liquids after they have evaporated, scientists have suggested that such rings can be used for examining blood or other fluids for disease markers by using biosensing devices. But a better understanding of how these rings behave at the micro- and nano-scale would probably be needed for practical bionsensors.

"Understanding micro- and nano-particle transportation within evaporating liquid droplets has great potential for several technological applications, including nanostructure self-assembly, lithography patterning, particle coating, and biomolecule concentration and separation," said Chih-Ming Ho, the Ben Rich-Lockheed Martin Professor at the UCLA Henry Samueli School of Engineering and Applied Science and director of the UCLA Center for Cell Control. "However, before we can engineer biosensing devices to do these applications, we need to know the definitive limits of this phenomenon. So our research turned to physical chemistry to find the lowest limits of coffee-ring formation."

A research group led by Ho, a member of the National Academy of Engineering, has now found the definitive microscopic minimal threshold of coffee-ring formation, which can be used to set standards for biosensor devices for multiple disease detection, as well as other uses. The research appears in the current issue of the Journal of Physical Chemistry B and is available online.

"If we consider human blood, or saliva, it has a lot of micro- and nano-scale molecules or particles that carry important health information," said Tak-Sing Wong, one of the researchers and a postdoctoral scholar in UCLA Engineering's department of mechanical and aerospace engineering. "If you put this blood or saliva on a surface, and then it dries, these particles will be collected in a very small region in the ring. By doing so, we can quantify these biomarkers by various sensing techniques, even if they are very small and in a small amount in the droplets."

As water evaporates from a droplet, particles that are suspended inside the liquid move to the droplet's edges. Once all the water has evaporated, the particles are concentrated in a ring around the stain that is left behind. However, if a droplet is small enough, the water will evaporate faster than the particles move. Rather than a ring, there will be a relatively uniform concentration in the stain, as the particles have not had enough time to move to the edges while still in the liquid.

"It is the competition between the timescale of the evaporation of the droplet and the timescale of the movement of the particles that dictates coffee-ring formation," said Xiaoying Shen, the paper's lead author and a senior microelectronics major at Peking University in China, who worked on these experiments while at the UCLA Cross Disciplinary Scholars in Science and Technology (CSST) program last summer.

To determine the smallest droplet size that would still show a coffee ring after evaporation, the research team manufactured a special surface coated in a checkerboard pattern that featured alternating hydrophilic, or water-loving, material and hydrophobic, or water-repelling, material.

The group then placed latex particles, ranging in size from 100 nanometers to 20 nanometers, in water. The particles were similar in size to disease-marker proteins that biosensors would look for.

The group washed the new surface with the particle-infused water. The remaining water lined up as droplets on the hydrophilic spots, much like checkers on a checkerboard. The group repeated the experiments with smaller grid patterns until the coffee-ring phenomenon was no longer evident. For the 100-nanometer sized particles, this occurred at a droplet diameter of approximately 10 micrometers, or about 10 times smaller than the width of a human hair. At this point, the water evaporated before the particles had enough time to move to the perimeter.

"Knowing the minimum size of this so-called coffee ring will guide us in making the smallest biosensors possible," Wong said. "This means that we can pack thousands, even millions, of small micro-biosensors onto a lab-on-a-chip, allowing one to perform a large number of medical diagnostics on a single chip. This may also open the doors to potentially detecting multiple diseases in one sitting."

"There's another important advantage — this whole process is very natural, it's just evaporation," Wong added. "We don't need to use additional devices, such as an electrical power source or other sophisticated instruments to move the particles. Evaporation provides a very simple way of concentrating particles and has potential in medical diagnosis. For example, researchers at Vanderbilt University were recently awarded a Gates Foundation Research Fund for proposing the use of the coffee-ring phenomenon for malaria detection in developing countries."

The researchers are currently optimizing the ring formation parameters and will then explore the application of this approach toward biosensing technologies that are being developed in Ho's laboratory.

The research was supported by the Center for Cell Control through the National Institutes of Health's Roadmap for Nanomedicine and by the Center for Scalable and Integrated Nanomanufacturing through the National Science Foundation. Shen received financial support from UCLA's Cross Disciplinary Scholars in Science and Technology (CSST) program.

####

About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Matthew Chin
310-206-0680


Wileen Wong Kromhout
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project