Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > JSR Joins SEMATECH’s Resist Center at UAlbany NanoCollege

Abstract:
Collaboration to provide cost-effective semiconductor materials for 22nm nodes

JSR Joins SEMATECH’s Resist Center at UAlbany NanoCollege

Albany, NY and Tokyo, Japan | Posted on May 11th, 2010

SEMATECH, a global consortium of chipmakers, and JSR Corporation, an advanced materials supplier to chip-makers and others, and its U.S. operation, JSR Micro, Inc. announced today that it has become the newest member of SEMATECH's Resist Materials and Development Center (RMDC) at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany.

JSR will collaborate with SEMATECH engineers on key resist issues in extreme ultraviolet (EUV) lithography. Focus areas will include:

· Working to reduce or eliminate line edge roughness (LER) in lithographic images below 22 nm

· Discovering ultimate resolution of newly formulated photoresists

· Testing various imaging materials for EUV sensitivity

SEMATECH and JSR have partnered previously in several technology development programs, including 300 mm test wafers, low-k films, and advanced resists, including double exposure materials.

"We have a successful history of partnership with SEMATECH and we are excited to continue that history in the field of EUV," said Hozumi Sato, managing director of JSR Corporation, responsible for the Research and Development. "Combining resources to create next generation of EUV materials is not only good for JSR and SEMATECH, but will benefit the industry as a whole."

"We're looking forward to working with JSR in our mutual effort to develop leading‑edge resists and materials, and accelerate process availability for EUV pilot line manufacturing," said John Warlaumont, vice president of Advanced Technology at SEMATECH. "Our successful experience in our previous partnerships will contribute greatly to RMDC's effectiveness."

"The addition of JSR to the roster of global companies at CNSE's Albany NanoTech Complex will further enhance the SEMATECH-CNSE partnership in driving leading-edge nanoelectronics innovations," said Richard Brilla, CNSE Vice President for Strategy, Alliances and Consortia. "This collaboration is enabling advances in a host of technologies, including EUV lithography, which are critical to industry."

At the RMDC, leading resist and materials suppliers participate in focused, cooperative R&D with SEMATECH member companies. Together, the RMDC provides the hardware and research expertise required by materials suppliers and member companies to develop EUV resist processes that meet the stringent resolution, linewidth roughness, and sensitivity specifications needed for EUV insertion at member companies.

####

About SEMATECH
For over 20 years, SEMATECH® (www.sematech.org), the international consortium of leading semiconductor manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

About JSR Corporation
Tokyo based JSR Corporation is an advanced manufacturer in polymer chemistry, it operates a wide range of global businesses ranging from the petrochemical business, including the manufacture of synthetic rubber, to the cutting-edge information and electronic materials business, including the manufacture of semiconductor materials and liquid crystal display materials. For more information, visit www.jsr.co.jp.

About CNSE
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE’s Albany NanoTech Complex is the most advanced research enterprise of its kind at any university in the world. With over $5.5 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE’s Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech. For more information, visit www.cnse.albany.edu.

For more information, please click here

Contacts:
SEMATECH
Erica McGill, 518-649-1041


JSR Corporation (Japan)
Yoshiko Takeda, 81-3-6218-3517


CNSE
Steve Janack, 518-956-7322


JSR Micro, Inc. (US)
Missy Bindseil, 408-543-8945

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Research partnerships

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project