Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Artificial diamonds may make fuel cells more affordable

Oxygen (red spheres) migrates from one vacancy to another inside the scandia-doped cubic zirconia. The cations the oxygen must brush past are marked by the letter E.
Oxygen (red spheres) migrates from one vacancy to another inside the scandia-doped cubic zirconia. The cations the oxygen must brush past are marked by the letter E.

Abstract:
Using specialized cubic zirconia or artificial diamonds, scientists from Nanjing Normal University in China and DOE's Pacific Northwest National Laboratory created a membrane that could drop the temperature inside solid oxide fuel cells (SOFCs).

Artificial diamonds may make fuel cells more affordable

Richland, WA | Posted on May 11th, 2010

Lowering the temperature means these cells could be built from less expensive materials.

Currently, the temperature inside SOFCs is about 1000 degrees Celsius. With this much heat, the cells must be constructed using very durable, very expensive ceramics. Lower temperatures mean the cells could be built from inexpensive stainless steel. The trick to dropping the temperature, and thus the cost, is the membrane at the heart of the cell. The team's new scandia-doped cubic zirconia can work at temperatures as low as 650C.

This work was done at DOE's EMSL, a national scientific user facility.

####

About Environmental Molecular Sciences Laboratory
EMSL is funded by DOE's Office of Biological Research, which supports world-class research in the biological, chemical, and environmental sciences to provide innovative solutions to the nation's environmental challenges as well as those related to energy production. EMSL's distinctive focus on integrating computational and experimental capabilities as well as collaborating among disciplines yields a strong, synergistic scientific environment. Bringing together experts and state-of-the-art instruments critical to their research under one roof, EMSL has helped thousands of researchers use a multidisciplinary, collaborative approach to solve some of the most important national challenges in energy, environmental sciences, and human health. These challenges cover a wide range of research, including synthesis, characterization, theory and modeling, dynamical properties, and environmental testing.

For more information, please click here

Contacts:
Kristin Manke
509.372.6011

Copyright © Environmental Molecular Sciences Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Possible Futures

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Materials/Metamaterials

Chains of nanogold forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

New material to revolutionize water proofing September 12th, 2016

Announcements

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Fuel Cells

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic