Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Project gets slice of PIE money

Abstract:
Stanford's Precourt Institute for Energy (PIE) has granted $1.8 million to six research projects proposed by faculty and students-a first for the 16-month-old institute.

By Erin Inman

Project gets slice of PIE money

Stanford, CA | Posted on May 10th, 2010

The Precourt Institute promotes interdisciplinary energy research and education, with the aim of providing people with "ideas that can transform the energy landscape for the future," wrote Franklin Orr ‘69, the institute's director and a petroleum engineering professor, in an e-mail to The Daily.

Future energy challenges will likely involve resources, conversion, efficiency, markets and regulatory structures, Orr said.

From a pool of 20 proposals, a committee of energy faculty members chose six projects that span the field of alternative energy, from turning paper into supercapacitors for grid-scale energy storage to stimulation prediction models in enhanced geothermal systems and development of a new high-temperature proton exchange membrane for fuel cells.

The grant for geothermal system models supports the institute's interdisciplinary approach by bringing together the Stanford Geothermal Program, led by earth sciences Prof. Roland Horne, and the Structural Geology and Geomechanics research group, led by earth sciences Prof. David Pollard Ph.D. ‘69.

Together, the groups will create a new fracture, stress and flow modeling approach that they hope "will provide insight into the phenomenon of induced seismicity," as stated in their grant proposal.

"Geothermal energy does have a promising future, if it is not derailed by the induced seismicity issue," Horne wrote in an e-mail to The Daily. "Geothermal (energy) is baseload, meaning that it can run all the time and is not subject to intermittency when the sun doesn't shine or the wind doesn't blow."

A second interdisciplinary grant was awarded to Yi Cui, professor of material sciences and engineering, and Zhenan Bao, professor of chemical engineering, who are trying to create supercapacitor devices that store energy by embedding nanostructure material in paper.

"Paper is porous; it has lots of empty space," Cui said. "Paper sucks up ink from pens. We're trying to do the same with nanotechnology."

Thus far, the group has developed a simple paper capacitor that powers light bulbs and LEDs.

The long term goal is "to stack paper together like a book to connect to an electric grid like a battery that can store the grid's fluctuating energy," Cui said.

If the grid storage is successful, Cui is hopeful that paper capacitors could even be used in portable electronics.

Orr called the funding for projects like Cui's and Bao's "seed funding."

"They allow our creative faculty and students to work on ideas that might be too risky for conventional funding sources, but have the potential to have a significant impact on future energy applications," he said.

Successful projects funded by PIE could compete for grants from the National Science Foundation, the Department of Energy and other sources, according to Orr.

####

For more information, please click here

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Possible Futures

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

BNAs improve performance of Li-ion batteries June 27th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project