Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano parfait a treat for scientists

Abstract:
Rice researchers spin pure batches of nanotubes species

Nano parfait a treat for scientists

Houston, TX | Posted on May 10th, 2010

In two new papers, Rice University researchers report using ultracentrifugation (UCF) to create highly purified samples of carbon nanotube species.

One team, led by Rice Professor Junichiro Kono and graduate students Erik Haroz and William Rice, has made a small but significant step toward the dream of an efficient nationwide electrical grid that depends on highly conductive quantum nanowire.

The other, led by Rice Professor Bruce Weisman and graduate student Saunab Ghosh, employed UCF to prepare structurally sorted batches of semiconducting nanotubes that could find critical uses in medicine and electronics.

UCF is what it sounds like: a super-fast version of the centrifuge process medical lab technicians use to separate blood cells from plasma.

The process involves suspending mixtures of single-walled carbon nanotubes in combinations of liquids of different densities. When spun by a centrifuge at up to 250,000 g - that's 250,000 times the force of gravity - the nanotubes migrate to the liquids that match their own particular densities. After several hours in the centrifuge, the test tube becomes a colorful parfait with layers of purified nanotubes. Each species has its own electronic and optical characteristics, all of which are useful in various ways.

Weisman's lab reported its results in today's online edition of Nature Nanotechnology. Weisman is a professor of chemistry at Rice.

Kono's lab reported its results recently in the online edition of ACS Nano. Kono is a professor in electrical and computer engineering and professor of physics and astronomy.

The lack of pure batches of nanotubes species "has been a real hindrance in the field for nearly 20 years," Weisman said. While the UCF technique is not new, Ghosh found careful fine-tuning of the gradient structure let him sort at least 10 of the numerous species of nanotubes contained in a single sample produced by the Rice-created HiPco process.

Basic research is a big early winner, "because when you can get pure samples of nanotubes, you can learn so much more about them," Weisman said. "Secondly, some electronic applications become much simpler because the tube type determines the nanotube's band gap, a crucial electronic property." Biomedical applications may benefit by exploiting the optical properties of specific types of nanotubes.

In the Kono lab, metallic nanotubes rose to the top of the spinning vial while nearly all of the semiconducting nanotubes sank to the bottom. What surprised lead researchers Haroz and Rice was that nearly all of the metallic tubes were armchair SWNTs, the most desirable species for the manufacture of quantum nanowire. Zigzag and near-zigzag species, also considered metallic, would also sink out.

Armchair nanotubes are so-called because of their "U"-shaped end segments. Theoretically, armchairs are the most conductive nanotubes, letting electrons charge down the middle with nothing to slow them.

The composition of the gradient solution made a difference in the quality of the samples, Haroz said. "One of the surfactants we're using, sodium cholate, has a molecular structure that's similar to a nanotube -- basically hexagons put together," he said. "We think there's a match between the sodium cholate and the structure of nanotubes, and it binds just a little bit better to an armchair than it does to zigzags."

Hurdles remain in the path to quantum armchair nanowires that nanotechnology pioneer and Nobel laureate Richard Smalley, Haroz' first mentor at Rice who died in 2005, felt would be a panacea for many of the world's problems. Fix the distribution of energy and solutions to other challenges - clean water, food, environmental woes - will fall into place, he believed.

"Step 1 of the armchair quantum nanowire project is, 'Can we get armchairs?' We've done that," said Haroz. "Now let's make macroscopic structures -- not necessarily long cables, but small structures -- to test their conductivity."

Rice research scientist Sergei Bachilo is co-author of the Nature Nanotechnology paper with Weisman and Ghosh. Grants from the National Science Foundation and the Welch Foundation supported the research.

Co-authors of the ACS Nano paper with Kono, Haroz, Rice, Weisman and Ghosh are Robert Hauge, Distinguished Faculty Fellow in Chemistry at Rice, Rice junior Ben Lu and Los Alamos National Laboratory researcher Stephen Doorn. The Department of Energy office of Basic Energy Sciences, the Welch Foundation, the Air Force Research Laboratories, the National Science Foundation and the Laboratory Directed Research and Development program at Los Alamos National Laboratory supported the research.

Read the Kono abstract at:
pubs.acs.org/doi/abs/10.1021/nn901908n?prevSearch=haroz2Bkono&searchHistoryKey=

Read the Weisman abstract at: www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2010.68.html

####

For more information, please click here

Contacts:
David Ruth
713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Announcements

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE