Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Baolab creates nanoscale MEMS inside the CMOS wafer

Abstract:
Uses standard CMOS technologies and lines to slash MEMS costs by up to two thirds

Baolab creates nanoscale MEMS inside the CMOS wafer

Barcelona, Spain | Posted on May 6th, 2010

Baolab Microsystems has announced a new technology to construct nanoscale MEMS (Micro Electro Mechanical Systems) within the structure of the actual CMOS wafer itself using standard, high volume CMOS lines, which is much easier and quicker with fewer process steps than existing MEMS fabrication techniques that build the MEMS on the surface of the wafer. This significantly reduces the costs of a MEMS by up to two thirds and even more if several different MEMS are created together on the same chip.

The Baolab NanoEMS™ technology uses the existing metal layers in a CMOS wafer to form the MEMS structure using standard mask techniques. The Inter Metal Dielectric (IMD) is then etched away through the pad openings in the passivation layer using vHF (vapour HF). The etching uses equipment that is already available for volume production and takes less than an hour, which is insignificant compared to the overall production time. The holes are then sealed and the chip packaged as required. As only standard CMOS processes are used, NanoEMS MEMS can be directly integrated with active circuitry as required.

"We have solved the challenge of building MEMS in a completely different way," explained Dave Doyle, Baolab's CEO. "Existing MEMS technologies are slow, expensive and require specialist equipment. They have to be either built on top of the wafer at a post production stage or into a recess in the wafer. By contrast, our new NanoEMS technology enables MEMS to be built using standard CMOS technologies during the normal flow of the CMOS lines."

Baolab has successfully created MEMS devices using standard 0.18um 8" volume CMOS wafers with four or more metal layers, and has achieved minimum feature sizes down to 200 nanometres. This is an order of magnitude smaller than is currently possible with conventional MEMS devices, bringing the new NanoEMS MEMS into the realm of nanostructures, with the additional benefits of smaller sizes, lower power consumption and faster devices.

Baolab will be making a range of discrete MEMS including RF switches, electronic compasses and accelerometers, along with solutions that combine several functions in one chip. The prototype stage has already proved the NanoEMS technology and evaluation samples will be available later this year. These are aimed at handset designers and manufacturers, and Power Amplifier and RF Front End Module markets.

NanoEMS is a trademark of Baolab Microsystems, S.L.

####

About Baolab Microsystems
Baolab is leading the field of MEMS inside CMOS integration with our innovative NanoEMSTM technology, enabling smaller mobile phones with more functionality, improved battery life, better performance, and reduced cost.

NanoEMSTM are fabricated in standard CMOS fabs with standard CMOS processes, delivering the Holy Grail of MEMS with CMOS circuitry integrated in a single die, at the lowest possible cost thanks to high volume availability of CMOS processes and full compatibility with mainstream packaging options.

For more information, please click here

Contacts:
info[at]baolab[dot]com
Institut Politècnic del Campus de Terrassa, 08220 Terrassa, Spain.
Tel.: +34-93-394-17-70

Press contact for interviews and illustrations is Nigel Robson, Vortex PR.
Nigel[at]vortexpr[dot]com
Tel: +44 1481 233080

Copyright © Neondrum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

MEMS

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

SITRI and Accelink Announce Cooperative Agreement on Opto-Electronic Communication December 31st, 2015

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanoelectronics

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic