Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Baolab creates nanoscale MEMS inside the CMOS wafer

Abstract:
Uses standard CMOS technologies and lines to slash MEMS costs by up to two thirds

Baolab creates nanoscale MEMS inside the CMOS wafer

Barcelona, Spain | Posted on May 6th, 2010

Baolab Microsystems has announced a new technology to construct nanoscale MEMS (Micro Electro Mechanical Systems) within the structure of the actual CMOS wafer itself using standard, high volume CMOS lines, which is much easier and quicker with fewer process steps than existing MEMS fabrication techniques that build the MEMS on the surface of the wafer. This significantly reduces the costs of a MEMS by up to two thirds and even more if several different MEMS are created together on the same chip.

The Baolab NanoEMS™ technology uses the existing metal layers in a CMOS wafer to form the MEMS structure using standard mask techniques. The Inter Metal Dielectric (IMD) is then etched away through the pad openings in the passivation layer using vHF (vapour HF). The etching uses equipment that is already available for volume production and takes less than an hour, which is insignificant compared to the overall production time. The holes are then sealed and the chip packaged as required. As only standard CMOS processes are used, NanoEMS MEMS can be directly integrated with active circuitry as required.

"We have solved the challenge of building MEMS in a completely different way," explained Dave Doyle, Baolab's CEO. "Existing MEMS technologies are slow, expensive and require specialist equipment. They have to be either built on top of the wafer at a post production stage or into a recess in the wafer. By contrast, our new NanoEMS technology enables MEMS to be built using standard CMOS technologies during the normal flow of the CMOS lines."

Baolab has successfully created MEMS devices using standard 0.18um 8" volume CMOS wafers with four or more metal layers, and has achieved minimum feature sizes down to 200 nanometres. This is an order of magnitude smaller than is currently possible with conventional MEMS devices, bringing the new NanoEMS MEMS into the realm of nanostructures, with the additional benefits of smaller sizes, lower power consumption and faster devices.

Baolab will be making a range of discrete MEMS including RF switches, electronic compasses and accelerometers, along with solutions that combine several functions in one chip. The prototype stage has already proved the NanoEMS technology and evaluation samples will be available later this year. These are aimed at handset designers and manufacturers, and Power Amplifier and RF Front End Module markets.

NanoEMS is a trademark of Baolab Microsystems, S.L.

####

About Baolab Microsystems
Baolab is leading the field of MEMS inside CMOS integration with our innovative NanoEMSTM technology, enabling smaller mobile phones with more functionality, improved battery life, better performance, and reduced cost.

NanoEMSTM are fabricated in standard CMOS fabs with standard CMOS processes, delivering the Holy Grail of MEMS with CMOS circuitry integrated in a single die, at the lowest possible cost thanks to high volume availability of CMOS processes and full compatibility with mainstream packaging options.

For more information, please click here

Contacts:
info[at]baolab[dot]com
Institut Politècnic del Campus de Terrassa, 08220 Terrassa, Spain.
Tel.: +34-93-394-17-70

Press contact for interviews and illustrations is Nigel Robson, Vortex PR.
Nigel[at]vortexpr[dot]com
Tel: +44 1481 233080

Copyright © Neondrum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

MEMS

Manufacturing platform makes intricate biocompatible micromachines January 7th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Movable microplatform floats on a sea of droplets: New technique offers precise, durable control over tiny mirrors or stages December 19th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project