Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers pin down the elusive masses of up, down and strange quarks

Quarks exist in a soup of other quarks, antiquarks and gluons within a proton or neutron. Determining their mass has been difficult due to the strong force that binds them together. Credit: Christine Davies/University of Glasgow
Quarks exist in a soup of other quarks, antiquarks and gluons within a proton or neutron. Determining their mass has been difficult due to the strong force that binds them together. Credit: Christine Davies/University of Glasgow

Abstract:
Quarks, the elementary particles that make up protons and neutrons, have been notoriously difficult to nail down -- much less weigh -- until now. A research group co-founded by Cornell physics professor G. Peter Lepage has calculated, with a razor-thin margin of error, the mass of the three lightest and, therefore, most elusive quarks: up, down and strange.

By Anne Ju

Researchers pin down the elusive masses of up, down and strange quarks

Ithaca, NY | Posted on May 4th, 2010

The work of Lepage, the Harold Tanner Dean of the College of Arts and Sciences, and collaborators from several international institutions, is published online (March 31) and in print in Physical Review Letters (Vol. 104:13).

The findings reduce the uncertainty of the quark masses by 10 to 20 times down to a few percent. Scientists have known the mass of a proton for almost a century, but getting the mass of the individual quarks inside has been an ongoing challenge. The quarks are held together by the so-called strong force -- so powerful that it's impossible to separate and study them. They exist in a soup of other quarks, antiquarks and gluons, which are another type of particle.

To determine the quark masses, Lepage explained, it was necessary to fully understand the strong force. They tackled the problem with large supercomputers that allowed them to simulate the behavior of quarks and gluons inside such particles as protons.

Quarks have an astonishingly wide range of masses. The lightest is the up quark, which is 470 times lighter than a proton. The heaviest, the t quark, is 180 times heavier than a proton -- or almost as heavy as an entire atom of lead.

"So why these huge ratios between masses? This is one of the big mysteries in theoretical physics right now," Lepage said. "Indeed it is unclear why quarks have mass at all." He added that the new Large Hadron Collider in Geneva was built to address this question.

According to their results, the up quark weighs approximately 2 mega electron volts (MeV), which is a unit of energy, the down quark weighs approximately 4.8 MeV, and the strange quark weighs in at about 92 MeV.

The research was supported by the Leverhulme Trust, the Royal Society, Science and Technology Facilities Counsel, Scottish Universities Physics Alliance, Spain's Ministry of Science and Innovation, the National Science Foundation and the Department of Energy.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Physics

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Noise in a microwave amplifier is limited by quantum particles of heat November 10th, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE