Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers pin down the elusive masses of up, down and strange quarks

Quarks exist in a soup of other quarks, antiquarks and gluons within a proton or neutron. Determining their mass has been difficult due to the strong force that binds them together. Credit: Christine Davies/University of Glasgow
Quarks exist in a soup of other quarks, antiquarks and gluons within a proton or neutron. Determining their mass has been difficult due to the strong force that binds them together. Credit: Christine Davies/University of Glasgow

Abstract:
Quarks, the elementary particles that make up protons and neutrons, have been notoriously difficult to nail down -- much less weigh -- until now. A research group co-founded by Cornell physics professor G. Peter Lepage has calculated, with a razor-thin margin of error, the mass of the three lightest and, therefore, most elusive quarks: up, down and strange.

By Anne Ju

Researchers pin down the elusive masses of up, down and strange quarks

Ithaca, NY | Posted on May 4th, 2010

The work of Lepage, the Harold Tanner Dean of the College of Arts and Sciences, and collaborators from several international institutions, is published online (March 31) and in print in Physical Review Letters (Vol. 104:13).

The findings reduce the uncertainty of the quark masses by 10 to 20 times down to a few percent. Scientists have known the mass of a proton for almost a century, but getting the mass of the individual quarks inside has been an ongoing challenge. The quarks are held together by the so-called strong force -- so powerful that it's impossible to separate and study them. They exist in a soup of other quarks, antiquarks and gluons, which are another type of particle.

To determine the quark masses, Lepage explained, it was necessary to fully understand the strong force. They tackled the problem with large supercomputers that allowed them to simulate the behavior of quarks and gluons inside such particles as protons.

Quarks have an astonishingly wide range of masses. The lightest is the up quark, which is 470 times lighter than a proton. The heaviest, the t quark, is 180 times heavier than a proton -- or almost as heavy as an entire atom of lead.

"So why these huge ratios between masses? This is one of the big mysteries in theoretical physics right now," Lepage said. "Indeed it is unclear why quarks have mass at all." He added that the new Large Hadron Collider in Geneva was built to address this question.

According to their results, the up quark weighs approximately 2 mega electron volts (MeV), which is a unit of energy, the down quark weighs approximately 4.8 MeV, and the strange quark weighs in at about 92 MeV.

The research was supported by the Leverhulme Trust, the Royal Society, Science and Technology Facilities Counsel, Scottish Universities Physics Alliance, Spain's Ministry of Science and Innovation, the National Science Foundation and the Department of Energy.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Physics

Entanglement: Chaos - Researchers at UCSB blur the line between classical and quantum physics by connecting chaos and entanglement July 14th, 2016

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron July 12th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Researchers determine fundamental limits of invisibility cloaks July 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Announcements

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic