Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers pin down the elusive masses of up, down and strange quarks

Quarks exist in a soup of other quarks, antiquarks and gluons within a proton or neutron. Determining their mass has been difficult due to the strong force that binds them together. Credit: Christine Davies/University of Glasgow
Quarks exist in a soup of other quarks, antiquarks and gluons within a proton or neutron. Determining their mass has been difficult due to the strong force that binds them together. Credit: Christine Davies/University of Glasgow

Abstract:
Quarks, the elementary particles that make up protons and neutrons, have been notoriously difficult to nail down -- much less weigh -- until now. A research group co-founded by Cornell physics professor G. Peter Lepage has calculated, with a razor-thin margin of error, the mass of the three lightest and, therefore, most elusive quarks: up, down and strange.

By Anne Ju

Researchers pin down the elusive masses of up, down and strange quarks

Ithaca, NY | Posted on May 4th, 2010

The work of Lepage, the Harold Tanner Dean of the College of Arts and Sciences, and collaborators from several international institutions, is published online (March 31) and in print in Physical Review Letters (Vol. 104:13).

The findings reduce the uncertainty of the quark masses by 10 to 20 times down to a few percent. Scientists have known the mass of a proton for almost a century, but getting the mass of the individual quarks inside has been an ongoing challenge. The quarks are held together by the so-called strong force -- so powerful that it's impossible to separate and study them. They exist in a soup of other quarks, antiquarks and gluons, which are another type of particle.

To determine the quark masses, Lepage explained, it was necessary to fully understand the strong force. They tackled the problem with large supercomputers that allowed them to simulate the behavior of quarks and gluons inside such particles as protons.

Quarks have an astonishingly wide range of masses. The lightest is the up quark, which is 470 times lighter than a proton. The heaviest, the t quark, is 180 times heavier than a proton -- or almost as heavy as an entire atom of lead.

"So why these huge ratios between masses? This is one of the big mysteries in theoretical physics right now," Lepage said. "Indeed it is unclear why quarks have mass at all." He added that the new Large Hadron Collider in Geneva was built to address this question.

According to their results, the up quark weighs approximately 2 mega electron volts (MeV), which is a unit of energy, the down quark weighs approximately 4.8 MeV, and the strange quark weighs in at about 92 MeV.

The research was supported by the Leverhulme Trust, the Royal Society, Science and Technology Facilities Counsel, Scottish Universities Physics Alliance, Spain's Ministry of Science and Innovation, the National Science Foundation and the Department of Energy.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Physics

New pathway to valleytronics January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE