Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab to Receive $8.6 Million in Recovery Act Funding for “Transformational” Energy Research Projects

Berkeley Lab scientist Jeffrey Long
Berkeley Lab scientist Jeffrey Long

Abstract:
The U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has been awarded $8.6 million in Recovery Act funding for what the DOE calls "ambitious research projects that could fundamentally change the way the country uses and produces energy." The money will go towards four separate projects: one that will speed the development of materials that can absorb carbon dioxide emitted from power plants, another that will use a common soil bacterium to produce biofuels, and two that are aimed at developing new high-energy batteries for powering electric vehicles.

Berkeley Lab to Receive $8.6 Million in Recovery Act Funding for “Transformational” Energy Research Projects

Berkeley, CA | Posted on May 4th, 2010

The projects are being funded through the DOE's Advanced Research Projects Agency-Energy (ARPA-E), whose mission is to invest in projects that will develop transformational energy technologies. Vice President Joe Biden announced last week a total of $106 million for 37 transformational energy research projects in three main areas: biofuels from electricity, batteries for transportation and zero-carbon coal.

"ARPA-E is awarding these grants to help our nation build a competitive clean energy industry that will mean jobs, economic growth and a sustainable energy future," said Berkeley Lab director Paul Alivisatos. "Berkeley Lab is proud to be involved in multiple projects that will play important roles in the success of this effort."

The carbon capture project, awarded $3,663,696, is led by chemist Jeffrey Long of Berkeley Lab's Materials Sciences Division. His goal is to find new materials that can absorb carbon dioxide and remove it from power plant flue gases, thus preventing it from escaping into the atmosphere. He will be targeting a class of materials called Metal Organic Framework compounds, which were developed only in the last decade and hold great promise for capturing carbon dioxide because of their tunable surface chemistry and record high internal surface areas.

The challenge is to rapidly investigate this new class of compounds, which have huge variability in possible structures, using automated, high-throughput materials synthesis and screening technology. The potential payoff at the end of this three-year project is a lower-cost way to perform carbon capture and sequestration, or CCS, which involves capturing carbon and storing it deep underground.

"CCS is already being tested on a big scale and is very close to implementation. This would be the next generation of materials to use in CCS," says Long. "The current capture process uses huge amounts of energy—roughly 30 percent of the power generated by a power plant. We're hoping we can get it down to 10 percent."

Long, along with Berkeley Lab scientists Berend Smit, Jeffrey Reimer and Eric Masanet, will be working with two partner organizations on this project: Wildcat Discovery Technologies of San Diego, California, which will help build a new type of instrumentation to screen hundreds of compounds in parallel, and the Electric Power Research Institute, which will provide analysis to determine how best to use the material in a power plant once it is discovered.

The biofuels project, awarded $3,948,493, is led by Steve Singer, who holds appointments with Berkeley Lab's Earth Sciences Division and with the Joint BioEnergy Institute (JBEI), a multi-institutional partnership led by Berkeley Lab that is working to replace gasoline and other petroleum-derived fuels with transportation fuels derived from the solar energy stored in plant biomass. The goal of his project is to genetically engineer new strains of a common soil bacterium, Ralstonia eutropha, now used in the production of bioplastics, so that it can be used in the production of advanced biofuels, including diesel and jet fuel. A key to the project's success will be the combination of the microbial system with a new electrochemical catalytic system that generates hydrogen from water.

"It's never been done before using this type of a combined microbial and electrochemical, or MEC system, but what we are basically looking to do is what a plant does in terms of photosynthesis, only instead of using sunlight, we will use electricity that can be generated from renewable sources such as solar, wind or wave power, which we will convert to hydrogen," says Singer. "This hydrogen can then be combined by the bacterium with carbon dioxide collected from a power plant, for example, to make fuel."

Ralstonia eutropha is already endowed with a natural ability to take hydrogen and carbon dioxide and make bioplastics and fatty acids, and techniques already exist for cultivating the microbe on an industrial scale. Singer and his colleagues want to re-route the microbe's existing metabolic pathways for biofuel production. To do so, they will make extensive use of the synthetic biology tools and techniques being developed at JBEI.

"We have this industrial organism, it has potential, why not kick its tires and see what it can do?" Singer says.

For the two battery research projects, Berkeley Lab is a sub-recipient, working as a partner with private industry to develop advanced batteries.

Applied Materials, Inc. of Santa Clara, California was awarded $4.4 million to develop ultra-high energy, low-cost lithium-ion batteries using a novel manufacturing process. Berkeley Lab will receive $675,000 over 2.5 years to provide component testing. Battery researchers Gao Liu and Vince Battaglia of the Environmental Energy Technologies Division (EETD) will be leading this effort.

For the second battery project, Sion Power Corp. of Tucson, Arizona will receive $5 million to develop high-energy lithium-sulfur batteries for electric vehicles. The research goal is to increase the battery's lifetime, allowing it to be recharged as many as 500 times, or more. Berkeley Lab will receive $300,000 over three years to help with research support and modeling. EETD's John Newman will lead this effort.

In addition to these projects, Jay Keasling, acting deputy director for Berkeley Lab and chief executive officer for JBEI, will be a key participant in a $6 million grant awarded to Ginkgo BioWorks of Boston, as the prime recipient, to genetically engineer E. coli bacterium that can produce isoctane, an important component of gasoline from carbon dioxide and water. Keasling is one of the world's foremost authorities on synthetic biology.

Separately, a Berkeley, California company that was launched in 1990 based on technology developed at Berkeley Lab, PolyPlus Battery, was awarded $5 million to work on lithium-air batteries for electric vehicles.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/.

For more information, please click here

Contacts:
Julie Chao
(510) 486-6491

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Materials/Metamaterials

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Energy

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project