Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Using Fullerenes as a ‘Cushion’ for Nanoparticles

Abstract:
Physicists reveal a new mechanism important for the stability of nano-composites TU Dortmund, Universität Freiburg and Fraunhofer-Institut für Werkstoffmechanik IWM

Using Fullerenes as a ‘Cushion’ for Nanoparticles

Germany | Posted on May 1st, 2010

Nanoparticles are recognized as promising building blocks for future applications, however their fixation on surfaces or in a matrix is everything else than a simple task. Now physicists observed that a double layer of spherical C60 carbon-molecules, called fullerenes, is an ideal substrate for these microscopic particles. Their results, recently published in Nature Nanotechnology, are an important step towards the application of tailor-made nanosystems.

The properties of nanoparticles often differ from those of a large piece made of the same material. By tuning the size and composition of the nanoparticles, one can ‘tailor' their chemical, optical or magnetic properties, and obtain features different from any bulk material. But for an application of this potential in the fields of catalysis, magnetic storage technology or optoelectronics, one has to fix the nanoparticles on surfaces or in matrixes. During this process the interaction with the surface or matrix at the worst destroys the unique properties of the nanoparticles.

Therefore it is important to develop techniques for a ‘gentle' yet secure fixation of nanoparticles. This was now achieved by a team of physicists from the TU Dortmund, the University of Freiburg and the Fraunhofer Institute for Mechanics of Materials IWM, who deposited the particles on a layer of spherical C60 carbon-molecules, called fullerenes, and investigated their properties.

They showed that a double layer of fullerenes on a metal surface is an ideal substrate for the fixation of nanoparticles. The size and shape of the particles stayed unchanged for days even at room temperature, which is ‘hot' for nanoscale processes. On a single layer of fullerenes, however, the particles shrank fast and disappeared within a few hours. Using atomic simulations this was traced back to temporary contacts bridging the fullerene layer and transporting atoms from the nanoparticles to the supporting metal surface.

On the basis of these results it might be possible, for example, to control the contact between nanoparticles by thin films which can either be penetrated or stay isolating. The scientists therefore not only demonstrated how to fix nanoparticles on surfaces without destruction of their geometric structure, but in particular they characterized a decay process for nanoparticles by the penetration of nanoscopic barriers in detail. These findings improve significantly the understanding of nanoparticle stability, which is an important step towards the application of tailor-made nanosystems.

Publication:
Stefanie Duffe, Niklas Grönhagen, Lukas Patryarcha, Benedikt Sieben, Chunrong Yin, Bernd von Issendorff, Michael Moseler and Heinz Hövel: Penetration of thin C60 films by metal nanoparticles, Nature Nanotechnology published online April 2010, DOI: 10.1038/NNANO.2010.45

####

For more information, please click here

Contacts:
Heinz Hövel (corresponding author)
Experimentelle Physik I
TU Dortmund
44221 Dortmund, Germany

phone: +49 231 755 3521
fax: +49 231 755 3657
TU Dortmund

Bernd von Issendorff
Physikalisches Institut
Universität Freiburg


Michael Moseler
Physikalisches Institut
Universität Freiburg and
Fraunhofer Institut für Werkstoffmechanik IWM

Copyright © Fraunhofer Institute for Mechanics of Materials IWM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE