Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Using Fullerenes as a ‘Cushion’ for Nanoparticles

Abstract:
Physicists reveal a new mechanism important for the stability of nano-composites TU Dortmund, Universität Freiburg and Fraunhofer-Institut für Werkstoffmechanik IWM

Using Fullerenes as a ‘Cushion’ for Nanoparticles

Germany | Posted on May 1st, 2010

Nanoparticles are recognized as promising building blocks for future applications, however their fixation on surfaces or in a matrix is everything else than a simple task. Now physicists observed that a double layer of spherical C60 carbon-molecules, called fullerenes, is an ideal substrate for these microscopic particles. Their results, recently published in Nature Nanotechnology, are an important step towards the application of tailor-made nanosystems.

The properties of nanoparticles often differ from those of a large piece made of the same material. By tuning the size and composition of the nanoparticles, one can ‘tailor' their chemical, optical or magnetic properties, and obtain features different from any bulk material. But for an application of this potential in the fields of catalysis, magnetic storage technology or optoelectronics, one has to fix the nanoparticles on surfaces or in matrixes. During this process the interaction with the surface or matrix at the worst destroys the unique properties of the nanoparticles.

Therefore it is important to develop techniques for a ‘gentle' yet secure fixation of nanoparticles. This was now achieved by a team of physicists from the TU Dortmund, the University of Freiburg and the Fraunhofer Institute for Mechanics of Materials IWM, who deposited the particles on a layer of spherical C60 carbon-molecules, called fullerenes, and investigated their properties.

They showed that a double layer of fullerenes on a metal surface is an ideal substrate for the fixation of nanoparticles. The size and shape of the particles stayed unchanged for days even at room temperature, which is ‘hot' for nanoscale processes. On a single layer of fullerenes, however, the particles shrank fast and disappeared within a few hours. Using atomic simulations this was traced back to temporary contacts bridging the fullerene layer and transporting atoms from the nanoparticles to the supporting metal surface.

On the basis of these results it might be possible, for example, to control the contact between nanoparticles by thin films which can either be penetrated or stay isolating. The scientists therefore not only demonstrated how to fix nanoparticles on surfaces without destruction of their geometric structure, but in particular they characterized a decay process for nanoparticles by the penetration of nanoscopic barriers in detail. These findings improve significantly the understanding of nanoparticle stability, which is an important step towards the application of tailor-made nanosystems.

Publication:
Stefanie Duffe, Niklas Grönhagen, Lukas Patryarcha, Benedikt Sieben, Chunrong Yin, Bernd von Issendorff, Michael Moseler and Heinz Hövel: Penetration of thin C60 films by metal nanoparticles, Nature Nanotechnology published online April 2010, DOI: 10.1038/NNANO.2010.45

####

For more information, please click here

Contacts:
Heinz Hövel (corresponding author)
Experimentelle Physik I
TU Dortmund
44221 Dortmund, Germany

phone: +49 231 755 3521
fax: +49 231 755 3657
TU Dortmund

Bernd von Issendorff
Physikalisches Institut
Universität Freiburg


Michael Moseler
Physikalisches Institut
Universität Freiburg and
Fraunhofer Institut für Werkstoffmechanik IWM

Copyright © Fraunhofer Institute for Mechanics of Materials IWM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project