Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Using Fullerenes as a ‘Cushion’ for Nanoparticles

Abstract:
Physicists reveal a new mechanism important for the stability of nano-composites TU Dortmund, Universität Freiburg and Fraunhofer-Institut für Werkstoffmechanik IWM

Using Fullerenes as a ‘Cushion’ for Nanoparticles

Germany | Posted on May 1st, 2010

Nanoparticles are recognized as promising building blocks for future applications, however their fixation on surfaces or in a matrix is everything else than a simple task. Now physicists observed that a double layer of spherical C60 carbon-molecules, called fullerenes, is an ideal substrate for these microscopic particles. Their results, recently published in Nature Nanotechnology, are an important step towards the application of tailor-made nanosystems.

The properties of nanoparticles often differ from those of a large piece made of the same material. By tuning the size and composition of the nanoparticles, one can ‘tailor' their chemical, optical or magnetic properties, and obtain features different from any bulk material. But for an application of this potential in the fields of catalysis, magnetic storage technology or optoelectronics, one has to fix the nanoparticles on surfaces or in matrixes. During this process the interaction with the surface or matrix at the worst destroys the unique properties of the nanoparticles.

Therefore it is important to develop techniques for a ‘gentle' yet secure fixation of nanoparticles. This was now achieved by a team of physicists from the TU Dortmund, the University of Freiburg and the Fraunhofer Institute for Mechanics of Materials IWM, who deposited the particles on a layer of spherical C60 carbon-molecules, called fullerenes, and investigated their properties.

They showed that a double layer of fullerenes on a metal surface is an ideal substrate for the fixation of nanoparticles. The size and shape of the particles stayed unchanged for days even at room temperature, which is ‘hot' for nanoscale processes. On a single layer of fullerenes, however, the particles shrank fast and disappeared within a few hours. Using atomic simulations this was traced back to temporary contacts bridging the fullerene layer and transporting atoms from the nanoparticles to the supporting metal surface.

On the basis of these results it might be possible, for example, to control the contact between nanoparticles by thin films which can either be penetrated or stay isolating. The scientists therefore not only demonstrated how to fix nanoparticles on surfaces without destruction of their geometric structure, but in particular they characterized a decay process for nanoparticles by the penetration of nanoscopic barriers in detail. These findings improve significantly the understanding of nanoparticle stability, which is an important step towards the application of tailor-made nanosystems.

Publication:
Stefanie Duffe, Niklas Grönhagen, Lukas Patryarcha, Benedikt Sieben, Chunrong Yin, Bernd von Issendorff, Michael Moseler and Heinz Hövel: Penetration of thin C60 films by metal nanoparticles, Nature Nanotechnology published online April 2010, DOI: 10.1038/NNANO.2010.45

####

For more information, please click here

Contacts:
Heinz Hövel (corresponding author)
Experimentelle Physik I
TU Dortmund
44221 Dortmund, Germany

phone: +49 231 755 3521
fax: +49 231 755 3657
TU Dortmund

Bernd von Issendorff
Physikalisches Institut
Universität Freiburg


Michael Moseler
Physikalisches Institut
Universität Freiburg and
Fraunhofer Institut für Werkstoffmechanik IWM

Copyright © Fraunhofer Institute for Mechanics of Materials IWM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Possible Futures

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Announcements

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project